matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBlockmatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Blockmatrizen
Blockmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blockmatrizen: obere Blockdreiecksmatrix
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 10.12.2012
Autor: Milchschelle

Aufgabe
Sei K ein Körper und A = [mm] \pmat{ 1 & A_{1,2} \\ 0 & B } \in K^{n,n}, [/mm] wobei B [mm] \in K^{n-1,n-1} [/mm] sei. Zeigen Sie, dass gilt:
A [mm] \in GL_{n}(K) [/mm] genau dann, wenn B [mm] \in GL_{n-1}(K). [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo liebes Forum =) ,

also ich könnte echt eure Hilfe gebrauchen.

Erstmal habe ich n=4 gewählt, damit ich mir die Matrix A besser vorstellen kann.

A = [mm] \pmat{ \pmat{ 1 } & \pmat{ a_{1,1} & a_{1,2} & a_{1,3} } \\ \pmat{ 0 \\ 0 \\ 0 } & \pmat{ b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} } } [/mm]

Ich habe gefunden, dass A invertierbar ist, genau dann wenn [mm] \pmat{ 1 } [/mm] und B invertierbar sind, aber wieso weshalb warum, das weiß ich nicht. Außerdem verstehe ich nicht, wie ich zeigen soll, dass [mm] \pmat{ 1 } [/mm] invertierbar ist, weil das würde ja bedeuten, dass [mm] \pmat{ 1 }^{-1} [/mm] * [mm] \pmat{ 1 } [/mm] = [mm] I_{1}, [/mm] also die Einheitsmatrix. Wie sieht jedoch eine Einheitsmatrix aus , die nur aus einem Element besteht?

Es wäre nett, wenn mir jemand einen Tipp geben könnte, wie man diese Aufgabe bewältigen kann.

Liebe Grüße

Milchschelle

        
Bezug
Blockmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 10.12.2012
Autor: blascowitz

Hallo,

hattet ihr schon Determinanten? Falls ja, dann versuche mal, die Determinanten von A nach der ersten Spalte  zu entwickelen. Was bekommst du da raus?

Falls ihr noch keine Determinanten hattet: Welche Kriterien für die Invertierbarkeit von Matrizen hattet ihr schon?

Viele Grüße
Blasco



Bezug
                
Bezug
Blockmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 10.12.2012
Autor: Milchschelle

Also Determinanten hatten wir noch nicht, aber kann man das mit dem Rang machen?

Wenn eine matrix invertierbar ist hat sie vollen Rang und andersrum. Das weiß ich schon mal.

Bezug
                        
Bezug
Blockmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mo 10.12.2012
Autor: blascowitz


> Also Determinanten hatten wir noch nicht, aber kann man das
> mit dem Rang machen?
>  
> Wenn eine matrix invertierbar ist hat sie vollen Rang und
> andersrum. Das weiß ich schon mal.

Das ist schon mal richtig.

Versuche mal zu zeigen: $rang(A)=1+rang(B)$

Wenn du das hast, bist schon mal ein großes Stück weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]