matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBruchrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Bruchrechnen
Bruchrechnen < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:07 So 30.09.2012
Autor: Laura1609

Aufgabe
Bruch ausrechnen:     [mm] 1-\bruch{x+y}{x-y} [/mm]

Guten Abend...Es wäre nett wenn mir jemand einen Tipp geben kann wie man diesen Bruch ausrechnet. Ich habe zwar die Lösung aber keine Idee wie ich diesen Bruch ausrechnen kann...die Lösung ist [mm] \bruch{-2y}{x-y}...Liebe [/mm] Grüße Laura (Ich habe diese Frage in keinem anderen Forum gestellt)

        
Bezug
Bruchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 30.09.2012
Autor: MathePower

Hallo Laura1609,

> Bruch ausrechnen:     [mm]1-\bruch{x+y}{x-y}[/mm]
>  Guten Abend...Es wäre nett wenn mir jemand einen Tipp
> geben kann wie man diesen Bruch ausrechnet. Ich habe zwar
> die Lösung aber keine Idee wie ich diesen Bruch ausrechnen


Erweitere die 1 so, daß sie als Bruch den Nenner x-y hat.

[mm]1=\bruch{...}{x-y}[/mm]


> kann...die Lösung ist [mm]\bruch{-2y}{x-y}...Liebe[/mm] Grüße
> Laura (Ich habe diese Frage in keinem anderen Forum
> gestellt)


Gruss
MathePower

Bezug
                
Bezug
Bruchrechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:27 So 30.09.2012
Autor: Laura1609

Vielen Dank schon mal...aber irgendwie verstehe ich das immer noch nicht :( ich weis nicht wie ich die 1 erweitern kann oder soll ich einfach das x+y als x+y unter die 1 tun?

Bezug
                        
Bezug
Bruchrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 So 30.09.2012
Autor: Valerie20

Hi!

> Vielen Dank schon mal...aber irgendwie verstehe ich das
> immer noch nicht :( ich weis nicht wie ich die 1 erweitern
> kann oder soll ich einfach das x+y als x+y unter die 1 tun?

>

Du musst versuchen, einen gemeinsamen Hauptnenner zu finden.

Angenommen du hättest den Bruch:

[mm] $\frac{1}{3}-\frac{1}{5}$ [/mm]

Dann müsstest du hier auch zunächst einen gemeinsamen Nenner finden.

Allgemein sieht das so aus:

[mm] $\frac{a}{b}-\frac{c}{d}=\frac{a\cdot d - b\cdot c}{b \cdot d}$ [/mm]

Bei deinem Term funktioniert das nun genauso.

Valerie  


Bezug
                                
Bezug
Bruchrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 So 30.09.2012
Autor: Laura1609

Merci...jetztz hat es geklappt und ich habe das so gerechnet [mm] \to \bruch{1}{1}-\bruch{x+y}{x-y} [/mm] und dann mit der Regel die du mir gegeben hast und da kam dann kam [mm] \bruch{x-y-x-y}{x-y} [/mm] raus und dann die Lösung [mm] \bruch{-2y}{x-y} [/mm] Vielen Dank...Grüße Laura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]