matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Brüche mit Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Brüche mit Potenzen
Brüche mit Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche mit Potenzen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 22.02.2007
Autor: MarekG

Aufgabe
[mm] \bruch{2^n}{5^n} \cdot \bruch{1^{n+1}}{3^{n+1}} \cdot \bruch{5^{n-1}}{4^{n-1}}[/mm]

Hallo
Möchte es vereinfachen und weiß nicht wie ich das anstellen soll.Ich habe zwar schon die Lösung gesehen, aber ich habe schon vieles ausprobiert und komme nicht auf diese.Bitte möglichst ausführlichen Lösungsweg
Danke

        
Bezug
Brüche mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:44 Do 22.02.2007
Autor: schachuzipus


> [mm]\bruch{2^n}{5^n} \cdot \bruch{1^{n+1}}{3^{n+1}} \cdot \bruch{5^{n-1}}{4^{n-1}}[/mm]
>  
> Hallo
> Möchte es vereinfachen und weiß nicht wie ich das anstellen
> soll.Ich habe zwar schon die Lösung gesehen, aber ich habe
> schon vieles ausprobiert und komme nicht auf diese.Bitte
> möglichst ausführlichen Lösungsweg
> Danke


Hallo Marek,

klammere die niedrigste Potenz aus:

[mm] \bruch{2^n}{5^n} \cdot \bruch{1^{n+1}}{3^{n+1}} \cdot \bruch{5^{n-1}}{4^{n-1}}=\left(\bruch{2}{5}\right)^n\cdot\left(\bruch{1}{3}\right)^{n+1}\cdot\left(\bruch{5}{4}\right)^{n-1}=\left(\bruch{2}{5}\right)^{n-1}\cdot\left(\bruch{2}{5}\right)\cdot\left(\bruch{1}{3}\right)^{n-1}\cdot\left(\bruch{1}{3}\right)^2\cdot\left(\bruch{5}{4}\right)^{n-1} [/mm]

[mm] =\left(\bruch{2}{5}\cdot\bruch{1}{3}\cdot\bruch{5}{4}\right)^{n-1}\cdot{}\left(\bruch{2}{5}\cdot\left(\bruch{1}{3}\right)^2\right)=\left(\bruch{1}{6}\right)^{n-1}\cdot\left(\bruch{2}{45}\right) [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Brüche mit Potenzen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:29 Do 22.02.2007
Autor: MarekG

Hallo
Hmm das ist aber merkwürdig, denn in diesem Mathebuch ist die Lösung so angegeben:
[mm]\bruch{1}{5 \cdot 3^{n+1} \cdot 2^{n-2}}[/mm]

ist das dann falsch oder sind beide Ergebnisse richtig nur anders ausgedrückt??
Gruß Marek

Bezug
                        
Bezug
Brüche mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Do 22.02.2007
Autor: angela.h.b.


> Hallo
>  Hmm das ist aber merkwürdig, denn in diesem Mathebuch ist
> die Lösung so angegeben:
>  [mm]\bruch{1}{5 \cdot 3^{n+1} \cdot 2^{n-2}}[/mm]
>  
> ist das dann falsch oder sind beide Ergebnisse richtig nur
> anders ausgedrückt??
>  Gruß Marek

Hallo,

die Ergebnisse sind gleich:

[mm] \left(\bruch{1}{6}\right)^{n-1}\cdot\left(\bruch{2}{45}\right) [/mm]

[mm] =(\bruch{1}{2*3})^{n-1}*\bruch{2}{3^2*5} [/mm]

[mm] =\bruch{1}{2^{n-1}*3^{n-1}}*\bruch{2}{3^2*5} [/mm]

=...

Gruß v. Angela

Bezug
                                
Bezug
Brüche mit Potenzen: Noch ne Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:51 Do 22.02.2007
Autor: MarekG

Ja okay.
Aber [mm]1 \cdot 2 =2[/mm] und nicht 1
Wo ist denn mein Denkfehler????Wie kommt die 1 in den Zähler??? und [mm]2^{n-2}[/mm]im Nenner.Das hat doch bestimmt was mit den beiden zu tun oder??

Bezug
                                        
Bezug
Brüche mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Do 22.02.2007
Autor: angela.h.b.


> Ja okay.
>  Aber [mm]1 \cdot 2 =2[/mm] und nicht 1
>  Wo ist denn mein Denkfehler????Wie kommt die 1 in den
> Zähler??? und [mm]2^{n-2}[/mm]im Nenner.Das hat doch bestimmt was
> mit den beiden zu tun oder??

Ja, das hat ziemlich viel miteinander zu tun.


$ [mm] =\bruch{1}{2^{n-1}\cdot{}3^{n-1}}\cdot{}\bruch{2}{3^2\cdot{}5} [/mm] $
[mm] =\bruch{1}{2^{n-1}\cdot{}3^{n-1}}\cdot{}\bruch{2}{3^2\cdot{}5}*\bruch{2^{-1}}{2^{-1}} [/mm]

=...

Klar?

Gruß v. Angela

Bezug
                                                
Bezug
Brüche mit Potenzen: Sorry noch ne Frage
Status: (Frage) beantwortet Status 
Datum: 11:07 Do 22.02.2007
Autor: MarekG

Hallo noch mal
Ja natürlich ist es jetzt klar.
Nur wozu erweitere ich das dann mit [mm]2^-1[/mm]
Ist es sinnvoll das zu erweitern nur um im Zähler eine 1 stehen zu haben??
Danke schon mal
Gruß Marek

Bezug
                                                        
Bezug
Brüche mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 22.02.2007
Autor: angela.h.b.


> Hallo noch mal
> Ja natürlich ist es jetzt klar.
>  Nur wozu erweitere ich das dann mit [mm]2^-1[/mm]
> Ist es sinnvoll das zu erweitern nur um im Zähler eine 1
> stehen zu haben??

Irgendwie ja schon - immerhin bekommt man so das, was Du haben willst!

Ich hätte es aber auch anders ausdrücken können, ich wollte die Verwirrung bloß so gering wie möglich halten:

[mm] ...*2=...*\bruch{1}{2^{-1}} [/mm]

Wie das Endergebnis genau aussehen soll, ob so, wie schachuzipus es aufgeschrieben hat, oder so, wie es im Lösungsbuch steht, ist Geschmackssache, bzw. kommt darauf an, was man weiter damit tun soll.

Aber wenn da steht "vereinfache", und Du hast oben eine Zweierpotenz und unten auch, wird das nicht das sein, was gefordert ist. Eine Zweierpotenz muß dann weg, und das haben wir getan.

Gruß v. Angela

Bezug
                                                                
Bezug
Brüche mit Potenzen: verständnis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Do 22.02.2007
Autor: MarekG

Alles Klar
muß mich erst wieder an diese denkweise gewöhnen..
Gruß Marek

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]