matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraCauchy-Schwarz-Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Cauchy-Schwarz-Ungleichung
Cauchy-Schwarz-Ungleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Schwarz-Ungleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 23:43 Mi 27.07.2005
Autor: Julio

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es geht um die Cauchy-Schwarz-Ungleichung:
[mm] ||\le\parallel x\parallel *\parallel y\parallel [/mm]

Ich verstehe nicht, warum auf der linken Seite Betragsstriche stehen müssen: Das Skalarprodukt ist doch per Definition positiv definit, d.h. <x,y> kann gar nicht kleiner als null sein. In allen gängigen Beweisen wird immer
[mm] ^{2}\le\parallel x\parallel^{2}*\parallel y\parallel [/mm] ^{2}
gezeigt. Da wie gesagt [mm] \ge [/mm] 0 ist, folgt doch daraus dann
[mm] \le\parallel x\parallel *\parallel y\parallel, [/mm]
also ohne Betrag auf der linken Seite. Oder...?

        
Bezug
Cauchy-Schwarz-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Do 28.07.2005
Autor: Hanno

Hallo Julio!

Positiv definit heißt lediglich, dass für alle [mm] $x\in [/mm] V$ stets [mm] $\langle x,x\rangle\geq [/mm] 0$ gilt, wobei Gleichheit nur für $x=0$ eintritt. Für [mm] $x,y\in [/mm] V$ und [mm] $x\not= [/mm] y$ kann durchaus [mm] $\langle x,y\rangle [/mm] <0$ gelten.


Liebe Grüße,
Hanno

Bezug
        
Bezug
Cauchy-Schwarz-Ungleichung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Do 28.07.2005
Autor: MatthiasKr

Hallo,

> Es geht um die Cauchy-Schwarz-Ungleichung:
>  [mm]||\le\parallel x\parallel *\parallel y\parallel[/mm]

Eine sehr wichtige ungleichung!

> Ich verstehe nicht, warum auf der linken Seite
> Betragsstriche stehen müssen...

Mal abgesehen davon, dass das skalarprodukt zweier vektoren durchaus negativ sein kann (siehe hannos post), hast du irgendwie auch recht: zumindest in reellen Vektorräumen stimmt die aussage auch ohne betragsstriche! allerdings ist sie mit betragsstrichen viel stärker, weil man den wert des skalarproduktes gleichzeitig auch 'nach unten' abschätzt.

Sobald man sich in einem komplexen vektorraum befindet, macht die aussage sowieso nur noch mit betragsstrichen sinn, weil auf den komplexen zahlen keine [mm] $\le$-Relation [/mm] definiert ist.

Viele Grüße
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]