matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Cauchy Folge
Cauchy Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mo 07.05.2007
Autor: grashalm

Aufgabe
Seien [mm] (x_{n})_{n\in \IN} [/mm] und [mm] (y_{n})_{n\in \IN} [/mm] Cauchy Folgen im metrischen Raum (X,d). Zeigen sie, dass [mm] (d(x_{n}, y_{n}))_{n\in \IN} [/mm] konvergiert.

Mh also anwenden der Dreiecksungleichung kann hier helfen aber ich komm so noch nicht drauf kann mir das jemand zeigen.

        
Bezug
Cauchy Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Di 08.05.2007
Autor: maybe.

versuch mal zu zeigen dass deine folge eine cauchy-folge in IR (!!!!) ist.

Bezug
                
Bezug
Cauchy Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Di 08.05.2007
Autor: grashalm

Mh hilft mir leider noch nicht. Kannst das ein wenig mehr ausschmücken?

Bezug
                        
Bezug
Cauchy Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Di 08.05.2007
Autor: angela.h.b.


> Mh hilft mir leider noch nicht. Kannst das ein wenig mehr
> ausschmücken?

Hallo,

Die Folge  $ [mm] (d(x_{n}, y_{n}))_{n\in \IN} [/mm] $ ist, wie mein Vorredner bereits sagte, eine Folge in [mm] \IR. [/mm]

[mm] \IR [/mm] mit der Betragsmetrik ist vollständig, d.h. hier konvergiert jede Cauchyfolge.

Wenn es Dir also gelingt, zu zeigen, daß [mm] (d(x_{n}, y_{n}))_{n\in \IN} [/mm] CF in [mm] \IR [/mm] ist, hast Du die Konvergenz gezeigt.

Wie geht das?

Du zeigst, daß es zu vorgegebenem [mm] \varepsilon [/mm] ein N gibt, so daß für alle [mm] n,m\ge [/mm] N gilt [mm] |d(x_{n}, y_{n})-d(x_{m}, y_{m})| \le \varepsilon. [/mm]

Hierfür mußt Du verwenden, daß [mm] x_n [/mm] und [mm] y_n [/mm] CF in (X;d) sind, Eigenschaften der Metrik, vermutlich auch des Betrages.

Gruß v. Angela


Bezug
                        
Bezug
Cauchy Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Di 08.05.2007
Autor: ullim

Hi,

als kleiner Tipp, es gilt

[mm] ||x|-|y||\le|x-y| [/mm]

mfg ullim

Bezug
                                
Bezug
Cauchy Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 08.05.2007
Autor: grashalm

Was mich stört wie hatten schonmal ne Bemerkung in der Vorlesung das nicht jede Cauchyfolge konvergiert bei ner Metrik [mm] \IR [/mm] ohne {0}
Aber ein Widerspruchsbeweis soll das hier nicht sein oder?

Bezug
                                        
Bezug
Cauchy Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 08.05.2007
Autor: maybe.

ich weiss jetzt nicht so ganz was du meinst mit
nicht jede Cauchyfolge konvergiert bei ner Metrik $ [mm] \IR [/mm] $ ohne {0}
aber fest steht dass deine Folge in IR liegt und dort jede c.f. konvergiert.
schreib doch mal hier rein was es bedeutet dass xn und yn c.f. sind und was es bedeutet dass d(xn,yn) eine c.f. in IR ist (also einfach nur definitionen rausschreiben)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]