matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesCauchyfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Cauchyfolge
Cauchyfolge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 So 06.05.2012
Autor: sissile

Aufgabe
Ist die Funktionenfolge [mm] f_n [/mm] (x) [mm] =e^{-nx} [/mm] eine Cauchyfolge? Im Intervall C([0,1])

Für x=0 ist es klar, dass es sich ume eine Cauchyfolge handelt
Aber wie kann ich in Intervall x [mm] \in [/mm] (0,1]
[mm] |e^{-nx} [/mm] - [mm] e^{-mx}| [/mm] abschätzten, dass ich erreiche, dass dieser term < [mm] \epsilon [/mm] wir für n,m > N ?

        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 06.05.2012
Autor: Diophant

Hallo sissile,

muss das mit dem Cauchy-Kriterium gezeigt werden? Du könntest sonst doch einfach ausnutzen, dass es sich in (0;1] um eine Nullfoge handelt...


Gruß, Diophant

Bezug
        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Mo 07.05.2012
Autor: fred97


> Ist die Funktionenfolge [mm]f_n[/mm] (x) [mm]=e^{-nx}[/mm] eine Cauchyfolge?
> Im Intervall C([0,1])
>  Für x=0 ist es klar, dass es sich ume eine Cauchyfolge
> handelt
>  Aber wie kann ich in Intervall x [mm]\in[/mm] (0,1]
>  [mm]|e^{-nx}[/mm] - [mm]e^{-mx}|[/mm] abschätzten, dass ich erreiche, dass
> dieser term < [mm]\epsilon[/mm] wir für n,m > N ?


Ich glaube, dass Du untersuchen sollst, ob es sich bei [mm] (f_n) [/mm] um eine Cauchyfolge im normierten Raum (C[0,1], [mm] ||*||_{\infty}) [/mm] handelt.

Damit sollst Du entscheiden , ob es zu jedem [mm] \varepsilon [/mm] >0 ein N [mm] \in \IN [/mm] gibt mit:


             [mm] ||f_n-f_m||_{\infty} [/mm] < [mm] \varepsilon [/mm] für n,m > N.

Lautet die Aufgabe so ?

FRED

Bezug
                
Bezug
Cauchyfolge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:21 Mo 07.05.2012
Autor: sissile

Ich bitte un Entschuldigung, hätte ich besser anschreiben sollen.

Die gesamte AUfgabe:
Untersuche:
Konvergenzverhalten der Funktionenfolge [mm] {f_n (x) = e^{-nx}} [/mm] in {C([0,1])} bezüglich der Normen [mm] {||.||_p, p \in [1, \infty]} [/mm]



Ich nehme an es handle sich um eine Cauchyfolge.
[mm] \forall \epsilon> [/mm] 0 [mm] \exists [/mm] N [mm] \in \IN, \forall [/mm] n,m > N und [mm] \forall [/mm] x [mm] \in [/mm] [0,1]:
[mm] |f_n [/mm] (x) - [mm] f_m [/mm] (x)| < [mm] \epsilon [/mm]


es soll für alle x gelten also auch für das supremum.
[mm] \forall [/mm] m,n > [mm] N\in \IN: sup_{x \in (0,1]} |e^{-nx} [/mm] - [mm] e^{-mx} [/mm] | < [mm] \epsilon [/mm]

Weite komme ich nicht.

Bezug
                        
Bezug
Cauchyfolge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 09.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]