matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCos(1/z), wesentliche Sing.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Cos(1/z), wesentliche Sing.
Cos(1/z), wesentliche Sing. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cos(1/z), wesentliche Sing.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 23.08.2011
Autor: Rechenfehler

Hallo zusammen!

Ich verstehe nicht genau warum [mm] cos(\bruch{1}{z}) [/mm] eine wesentliche Singularität bei z=0 besitzt. Nach dem Hebbarkeitssatz findet man ja offensichtlich eine obere Schranke. |f(z)| = [mm] |cos(\bruch{1}{z})|\le [/mm] 1??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cos(1/z), wesentliche Sing.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Di 23.08.2011
Autor: MathePower

Hallo Rechenfehler,

> Hallo zusammen!
>  
> Ich verstehe nicht genau warum [mm]cos(\bruch{1}{z})[/mm] eine
> wesentliche Singularität bei z=0 besitzt. Nach dem
> Hebbarkeitssatz findet man ja offensichtlich eine obere
> Schranke. |f(z)| = [mm]|cos(\bruch{1}{z})|\le[/mm] 1??


Das ist richtig.

Betrachte hier die Laurententwicklung von [mm]\cos\left(\bruch{1}{z}\right)[/mm] um z=0.

Diese hat einen unendlichen Hauptteil,
daher handelt es sich hier um eine wesentliche Singularität.


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
        
Bezug
Cos(1/z), wesentliche Sing.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 23.08.2011
Autor: Rechenfehler

Ja vieleicht habe ich meine Frage etwas unglücklich formuliert. Ich verstehe, dass es sich um eine wesentliche Singularität handel muss. Das sieht man ja schon wenn man sich die funktion ploten lässt wie stark sie in der nähe von null oszilliert. Was ich wohl ehr nicht verstehe ist dann der Hebbarkeitssatz:

"Ist f in einer Umgebung einer isolierten Singularität beschränkt, d.h. gibt es M und [mm] \varepsilon [/mm] > 0 mit |f(z)|<M für alle z mit 0 [mm] <|z-z_{0}|<\varepsilon [/mm] , so ist die Singularität hebbar."

weil [mm] |cos(z)|\le [/mm] 1 oder gilt das nur im reelen?

Bezug
                
Bezug
Cos(1/z), wesentliche Sing.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Di 23.08.2011
Autor: Rechenfehler

okay auf die Idee hätte ich vorher schonmal kommen können....
Ich seh grade das sie im komplexen nicht beschränkt sind. Dann ist alles klar.

Bezug
                
Bezug
Cos(1/z), wesentliche Sing.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 23.08.2011
Autor: MathePower

Hallo Rechenfehler,

> Ja vieleicht habe ich meine Frage etwas unglücklich
> formuliert. Ich verstehe, dass es sich um eine wesentliche
> Singularität handel muss. Das sieht man ja schon wenn man
> sich die funktion ploten lässt wie stark sie in der nähe
> von null oszilliert. Was ich wohl ehr nicht verstehe ist
> dann der Hebbarkeitssatz:
>  
> "Ist f in einer Umgebung einer isolierten Singularität
> beschränkt, d.h. gibt es M und [mm]\varepsilon[/mm] > 0 mit
> |f(z)|<M für alle z mit 0 [mm]<|z-z_{0}|<\varepsilon[/mm] , so ist
> die Singularität hebbar."
>  
> weil [mm]|cos(z)|\le[/mm] 1 oder gilt das nur im reelen?


Ja, das gilt nur im reellen.


Gruss
MathePower

Bezug
                
Bezug
Cos(1/z), wesentliche Sing.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 24.08.2011
Autor: fred97

1. Für t [mm] \in \IR [/mm] gilt:

  $cos(it)=cosh(t) [mm] \to \infty$ [/mm]  für $t [mm] \to \pm \infty$ [/mm]



2. Ist f eine ganze Funktion, aber kein Polynom, so gilt für die Potenzreihenentwicklung


             $f(z)= [mm] \summe_{n=0}^{\infty}a_n*z^n$, [/mm]

dass

             (*) [mm] $a_n \ne [/mm] 0$  ist für unendlich viele n.

Weiter ist

               $f(1/z)= [mm] \summe_{n=0}^{\infty}\bruch{a_n}{z^n}$ [/mm]

die Laurententwicklung von g um 0, wobei g(z):=f(1/z).  Aus (*) folgt:  g hat in 0 eine wesentliche Singularität.


Bei Dir ist f(z)=cos(z).

FRED

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]