matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 2. grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL 2. grades
DGL 2. grades < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 08.06.2010
Autor: kappen

Aufgabe
Lösen Sie die gDGL [mm] y''+\omega*y=0 [/mm]
y(0)=a
y'(0)=b

über den Ansatz [mm] y(t)=A*sin(\wurzel{\lambda}*t+\phi) [/mm]

Hi leute, würde nur gerne das Ergebnis vergleichen, denn die DGL geht zwar irgendwie auf, habe aber relativ unschöne Ergebnisse.

Habe also 3 Mal y(t) abgeleitet, eingesetzt und [mm] \lambda=\omega^2 [/mm] herausbekommen.

für y(0)=a gilt: [mm] A*sin\phi=a [/mm]
und für y'(0)=b gilt: [mm] A*cos\phi*\wurzel{\lambda}=b [/mm]

gleichgesetzt: [mm] \bruch{a}{sin\phi}=\bruch{b}{cos\phi*\omega} \gdw \phi=arctan(\bruch{\omega*a}{b}) [/mm]

das kann ich dann wieder einsetzen und bekomme für A dann [mm] \wurzel{1+\bruch{b}{\omega*a}^2} [/mm] heraus.
Wenn ich die Probe mache, löst sich das ganze auch auf, aber das täte es ja auch, wenn mein A und phi völlig falsch sind.

Da ich denke, dass diese Aufgabe Kleinzeug für euch ist, frage ich nach einem Ergebnisvergleich, sonst bemühe ich mich immer um Lösungswege.

Vielen Dank im Voraus,
kappen

        
Bezug
DGL 2. grades: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Di 08.06.2010
Autor: MathePower

Hallo kappen,

> Lösen Sie die gDGL [mm]y''+\omega*y=0[/mm]
>  y(0)=a
>  y'(0)=b
>  
> über den Ansatz [mm]y(t)=A*sin(\wurzel{\lambda}*t+\phi)[/mm]
>  Hi leute, würde nur gerne das Ergebnis vergleichen, denn
> die DGL geht zwar irgendwie auf, habe aber relativ
> unschöne Ergebnisse.
>  
> Habe also 3 Mal y(t) abgeleitet, eingesetzt und


Hier meinst Du wohl "2 Mal" statt "3 Mal".


> [mm]\lambda=\omega^2[/mm] herausbekommen.
>  
> für y(0)=a gilt: [mm]A*sin\phi=a[/mm]
>  und für y'(0)=b gilt: [mm]A*cos\phi*\wurzel{\lambda}=b[/mm]
>  
> gleichgesetzt: [mm]\bruch{a}{sin\phi}=\bruch{b}{cos\phi*\omega} \gdw \phi=arctan(\bruch{\omega*a}{b})[/mm]


[ok]


>  
> das kann ich dann wieder einsetzen und bekomme für A dann
> [mm]\wurzel{1+\bruch{b}{\omega*a}^2}[/mm] heraus.


Für A habe ich etwas anderes heraus.


> Wenn ich die Probe mache, löst sich das ganze auch auf,
> aber das täte es ja auch, wenn mein A und phi völlig
> falsch sind.
>  
> Da ich denke, dass diese Aufgabe Kleinzeug für euch ist,
> frage ich nach einem Ergebnisvergleich, sonst bemühe ich
> mich immer um Lösungswege.
>  
> Vielen Dank im Voraus,
>  kappen


Gruss
MathePower

Bezug
                
Bezug
DGL 2. grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 08.06.2010
Autor: kappen

Ah, fürchte hab ich falsch in die Wurzel gezogen.

[mm] A=\wurzel{a^2+\bruch{b^2}{w^2}} [/mm]

War nur irgendwie irritiert über das Ergebnis.

Naja muss unbedingt noch dgls üben :(

Bezug
                        
Bezug
DGL 2. grades: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Di 08.06.2010
Autor: MathePower

Hallo kappen,

> Ah, fürchte hab ich falsch in die Wurzel gezogen.
>  
> [mm]A=\wurzel{a^2+\bruch{b^2}{w^2}}[/mm]


Jetzt stimmt's. [ok]


>  
> War nur irgendwie irritiert über das Ergebnis.
>  
> Naja muss unbedingt noch dgls üben :(


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]