matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit welchem Ansatz?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL mit welchem Ansatz?
DGL mit welchem Ansatz? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit welchem Ansatz?: erkennen, DGL, komplexe Zahl,
Status: (Frage) beantwortet Status 
Datum: 19:29 Do 15.10.2009
Autor: bobbert

Aufgabe
x´´+5x´+4x=sin2t im Gegensatz zu x´´-2x´+2x=sin2t

bei der 1. x´´+5x´+4x=sin2t nehme ich den Ansatz  [mm] x(t)=e^\lambda [/mm] t und leite sie 2 mal ab.

bei der 2. DGL x´´-2x´+2x=sin2t nehme ich den Ansatz [mm] \lambda^2-2\lambda+4x [/mm] weil ich dort komplexe Zahlen heraus bekomme.

Habe die Ansätze vorgegeben bekommen doch wie komme ich selber darauf, dass ich diesen Ansatz nehmen muss?
Sollte ich zuerst die homogene DGL mit der PQ-Formel bearbeiten und so herausfinden ob [mm] \lambda [/mm] eine komplexe oder reelle Zahl ist , oder [mm] \lambda [/mm] 1,2 vll nur eine Zahl sind , damit ich den richtigen Ansatz dafür wählen kann?


Ich möchte nicht die herleitungen für die Sätze , sondern nur wissen wie ich erkenne welchen Satz ich nehmen muss!

Danke schon im Voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
DGL mit welchem Ansatz?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Do 15.10.2009
Autor: MathePower

Hallo babbert,

> x´´+5x´+4x=sin2t im Gegensatz zu x´´-2x´+2x=sin2t
>  bei der 1. x´´+5x´+4x=sin2t nehme ich den Ansatz  
> [mm]x(t)=e^\lambda[/mm] t und leite sie 2 mal ab.
>  
> bei der 2. DGL x´´-2x´+2x=sin2t nehme ich den Ansatz
> [mm]\lambda^2-2\lambda+4x[/mm] weil ich dort komplexe Zahlen heraus
> bekomme.
>  
> Habe die Ansätze vorgegeben bekommen doch wie komme ich
> selber darauf, dass ich diesen Ansatz nehmen muss?
>  Sollte ich zuerst die homogene DGL mit der PQ-Formel
> bearbeiten und so herausfinden ob [mm]\lambda[/mm] eine komplexe
> oder reelle Zahl ist , oder [mm]\lambda[/mm] 1,2 vll nur eine Zahl
> sind , damit ich den richtigen Ansatz dafür wählen kann?
>  


Ja, ermittle zunächst die Nullstellen
des charakteristischen Polynoms

[mm]\lambda^{2}+a*\lambda+b=0[/mm]

Die Lösung der homogenen DGL ergibt sich gemäß dem Ansatz:

[mm]x\left(t\right)=c_{1}*e^{\lambda_{1}*t}+c_{2}*e^{\lambda_{2}*t}[/mm]

,wobei [mm]\lambda_{1}, \lambda_{2}[/mm] Lösungen der obigen Gleichung sind.

Für reelle [mm]\lambda[/mm] sind die
Lösungen der homogenen DGL sofort ersichtlich.

Sind [mm]\lambda_{1}, \ \lambda_{2}[/mm] komplex, so ergeben sich die
Lösungen wie folgt:

[mm]x\left(t\right)=c_{1}*e^{\operatorname{Re}\left(\lambda_{1}\right)*t}*\sin\left(\operatorname{Im}\left(\lambda_{1}\right)*t\right)+c_{2}*e^{\operatorname{Re}\left(\lambda_{1}\right)*t}*\cos\left(\operatorname{Im}\left(\lambda_{1}\right)*t\right)[/mm]


>
> Ich möchte nicht die herleitungen für die Sätze ,
> sondern nur wissen wie ich erkenne welchen Satz ich nehmen
> muss!


Um die inhomogene DGL zu lösen,
wählst Du den Ansatz gemäß der Störfunktion.


>  
> Danke schon im Voraus!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
                
Bezug
DGL mit welchem Ansatz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 15.10.2009
Autor: bobbert

Danke Mathpower!

Sehr gut also erst schauen was [mm] \lambda [/mm] 1 und 2 ergibt und dann danach den Ansatz wählen.

Im Bezug auf die Spezielle Lösung der inhomogenen DGL:
Ansatz xs(t)=a*cos2t+b*sin2t wobei sin2t der inhomogene Teil ist.
Es würde ja aber keinen UNterschied machen wenn ich sie vertauschen würde :

xs(t)=a*sin2t+b*cos2t oder    ????



Bezug
                        
Bezug
DGL mit welchem Ansatz?: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 20:00 Do 15.10.2009
Autor: Loddar

Hallo bobbert!


> Es würde ja aber keinen UNterschied machen wenn ich sie
> vertauschen würde :
>  
> xs(t)=a*sin2t+b*cos2t oder    ????

[ok] Richtig.


Gruß
Loddar


Bezug
                                
Bezug
DGL mit welchem Ansatz?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Do 15.10.2009
Autor: bobbert

Danke euch beiden !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]