matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDarstellungsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Darstellungsmatrix
Darstellungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:11 Mo 03.02.2020
Autor: Olli1968

Aufgabe
Sei [mm]A=\{e_{1}, e_{2}, e_{3}\}[/mm] die Standardbasis von [mm]V=\IC^{3}[/mm] und sei [mm]B=\{y_{1}=\vektor{-1 \\ 0 \\ 1},y_{2}=\vektor{0 \\ 1 \\ -1}, y_{3}=\vektor{0 \\ 5 \\ -4} \}[/mm] eine weitere Basis von [mm]V[/mm]. Sei[mm] \phi:V \to V[/mm] eine lineare Abbildung mit Darstellungsmatrix [mm]M_{B}^{B}(\phi)=\pmat{ 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -1}[/mm].
Bestimmen Sie die Darstellungsmatrizen [mm]M_{A}^{A}(\phi)[/mm] und [mm]M_{A}^{A}(\phi^{2020})[/mm]

(ich habe diese Frage in keinem anderen Forum gepostet)

Hallo liebe Mathefreunde,
ich brauche mal wieder eure Hilfe. Zu dieser Aufgabe liegt mir eine Musterlösung vor. Soweit kam ich mit der Aufgabe gut zurecht, nur ist mir aufgefallen, dass es Unterschiede beim Verständnis der Basiswechselmatrizen gibt.
In der Musterlösung haben die, die Transformationsmatrizen wie folgt notiert:
[mm]M_{A}^{B}(id)=\pmat{ -1 & 0 & 0 \\ 0 & 1 & 5 \\ 1 & -1 & -4}[/mm] und [mm]M_{B}^{A}(id)=\pmat{ -1 & 0 & 0 \\ -5 & -4 & -5 \\ 1 & 1 & 1}[/mm].
Ich hatte aber
[mm]M_{B}^{A}(id)=\pmat{ -1 & 0 & 0 \\ 0 & 1 & 5 \\ 1 & -1 & -4}[/mm] und [mm]M_{A}^{B}(id)=\pmat{ -1 & 0 & 0 \\ -5 & -4 & -5 \\ 1 & 1 & 1}[/mm] erhalten.

Nach meinem Verständnis müsste doch [mm]M_{B}^{A}e_{1}=\vektor{ -1 \\ 0 \\ 1}[/mm] sein ?!

Nach der Musterlösung erhalte ich dann aber [mm]M_{B}^{A}e_{1}=\vektor{ -1 \\ -5 \\ 1}[/mm]

Oder verstehe ich da was nicht?

Vielen Dank für eure Unterstützung.



        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mo 03.02.2020
Autor: Gonozal_IX

Hiho,

> Nach der Musterlösung erhalte ich dann aber
> [mm]M_{B}^{A}e_{1}=\vektor{ -1 \\ -5 \\ 1}[/mm]

das ist auch korrekt und muss so sein.
Warum? [mm] $M_B^A$ [/mm] ist der Basiswechsel von A nach B, d.h. nach Anwendung von [mm] M_B^A [/mm] wird jeder Vektor nicht mehr gemäß der Basis A, sondern gemäß der Basis B dargestellt.

D.h. [mm] $M_B^Ae_1$ [/mm] ist die Darstellung von [mm] e_1 [/mm] gemäß der Basis B.
[mm] $\vektor{a_1 \\ a_2 \\ a_3}$ [/mm] ist aber dann die Darstellung von [mm] e_1 [/mm] gemäß der Basis B, wenn gilt:

[mm] $e_1 [/mm] = [mm] a_1y_1 [/mm] + [mm] a_2y_2 [/mm] + [mm] a_3y_3$ [/mm]

Lösen des Gleichungssystems liefert: [mm] $\vektor{a_1 \\ a_2 \\ a_3} [/mm] =  [mm] \vektor{ -1 \\ -5 \\ 1}$ [/mm]

D.h. [mm]M_{B}^{A}e_{1}=\vektor{ -1 \\ -5 \\ 1}[/mm]

Man kann nun zeigen: Ist A die Standardbasis, so ist [mm] $M_{B}^{A} [/mm] = [mm] (y_1,y_2,y_3)^{-1}$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Darstellungsmatrix: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Mo 03.02.2020
Autor: Olli1968

Hallo Gono,

danke für deine schnelle Hilfe.
Jetzt ist es klar ...
Ich hatte irgendwie [mm]M_{B}^{A}e_{i}[/mm] mit [mm]\phi(e_{i})=y_{i}[/mm] zusammen gebracht, aber [mm]M_{B}^{A}[/mm] liefert ja den Koordinatenvektor von [mm]e_{i}[/mm] zur Basis B.

Somit erhalte ich [mm]M_{B}^{A}[/mm] durch die Koordinatenvektoren der Standardbasis bezüglich der Basis B und [mm]M_{A}^{B}[/mm] durch die Koordinatenvektoren bezüglich der Standradbasis also durch die [mm]y_{i} \in B[/mm] als Spalten der Matrix.

Nochmals Danke für deine schnelle Hilfe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]