matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesDefinitionsbereich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 So 09.12.2007
Autor: bunnydeluxe13

Aufgabe
Bestimmen Sie den maximalen Definitionsbereich der Funktion f.

a.) f(x) = 1  b.)f(x) = [mm] 1/p^3 [/mm]  c.) f(x) = [mm] x/(x-2)^3 [/mm]  d.) f(m) = [mm] 4\wurzel{m} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Eine Hilfe wäre nett =)

Danke im Vorraus,
Lg Eli.

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 09.12.2007
Autor: Tyskie84

Hallo

Weisst du was der Definitionsberecih aussagt???

Du nimmst dir einfach den Definitionsbereich der reellen Zahlen [mm] \IR [/mm] und musst dann für deine gegebenen Funktionen wenn nötig einschränkungen machen.

Als Beispiel: [mm] \bruch{1}{x-1} [/mm] Der Definitionsbereich ist: [mm] DB_{f}=\IR [/mm] \ {1} (oder ganz formal aufgeschrieben [mm] DB_{f}= [/mm] {x [mm] \in \IR [/mm]  | x [mm] \not= [/mm] 1})  das bedeutet dass man für x alle reellen Zahlen einsetzten darf bis auf die 1 denn man darf ja durch 0 nicht dividieren. Versuch es mal für deine funktionen :)

Gruß



Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 09.12.2007
Autor: bunnydeluxe13

Hallo,

also zb jetzt bei

f(x) = [mm] -x^4 [/mm] wäre der Def. Bereich D= R / {0}
oder wie ?!

weil da würde ja rauskommen - 0 ^ 4 = 0 ?!

und wenn ich einsetzen würde zb 2

wäre es - 2 ^4 = - 16 ?!

__________________

oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def. bereich?

Bezug
                        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 09.12.2007
Autor: Tyskie84


> Hallo,
>  
> also zb jetzt bei
>
> f(x) = [mm]-x^4[/mm] wäre der Def. Bereich D= R / {0}
> oder wie ?!

NEIN. Da gibt es doch keinen eingeschränkten bereich. du darfst doch alles einseten was du willst also ist [mm] DB_{f}= \IR [/mm]

>


>  
> oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def.
> bereich?

Bei brüchen ist das folgenermaßen. Der Nenner darf NIEMALS null werden also berechne die Nullstellen im Nenner und die Nullstellen die du heraus bekommst darfst du nicht einseten und ist somit dein eingeschränkter definitionsbereich

Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]