matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDefinitionsbereich u. Stetigk.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Definitionsbereich u. Stetigk.
Definitionsbereich u. Stetigk. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich u. Stetigk.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 19.06.2014
Autor: alikho93

Aufgabe
Bestimmen Sie den maximalen Definitionsbereich [mm] D_{g} [/mm] in [mm] \IR^{2} [/mm] und zeigen Sie, dass die Funktion g stetig ist.

g(x,y):=( [mm] \bruch{x}{\wurzel{x^{2}+y^{2}}}, sin(xy+\wurzel{x}), ln(x^{2}+\wurzel{xy})) [/mm]


Hallo,

ich habe folgendes berechnet und hoffe, dass die Ergebnisse richtig sind :

[mm] D_{g}= \{(x,y)^{T}\in \IR^{2} ; x^{2}+y^{2}>0, x\ge0, x^{2}+\wurzel{xy}>0, x*y\ge0\} [/mm]

= [mm] \{(x,y)^{T}\in \IR^{2} ; x>0, y\ge0\} [/mm]


Für die Stetigkeit : Da alle Operationen der Komponentenfunktionen stetig sind, ist g(x,y) stetig.

        
Bezug
Definitionsbereich u. Stetigk.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Do 19.06.2014
Autor: Leopold_Gast

Richtig erkannt, aber falsch formuliert. Operationen können nicht stetig sein. Formuliere so: "... da die Stetigkeit bei den rationalen Operationen und der Verkettung erhalten bleibt und [mm]g[/mm] sich aus stetigen Grundfunktionen mit Hilfe dieser Operationen erzeugen läßt".

Bezug
                
Bezug
Definitionsbereich u. Stetigk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Do 19.06.2014
Autor: alikho93

Super ich danke.

Und der Definitionsbereich ist auch in der richtigen Schreibweise und auch vom Inhalt her richtig?

Bezug
                        
Bezug
Definitionsbereich u. Stetigk.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Do 19.06.2014
Autor: Leopold_Gast

Definitionsbereich stimmt. Du könntest ihn noch in der Form [mm]D = (0,\infty) \times [0,\infty)[/mm] schreiben. Aber das ist Geschmacksache.

Bezug
                                
Bezug
Definitionsbereich u. Stetigk.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Do 19.06.2014
Autor: alikho93

Super ich danke! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]