matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitDelta-Epsilon Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Delta-Epsilon Kriterium
Delta-Epsilon Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Epsilon Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Do 15.11.2018
Autor: CrowleyAstray

Aufgabe
Geben Sie für die nachstehende Funktion zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 an, sodass aus |x − x0| < [mm] \delta [/mm] die Beziehung |f(x) − f(x0)| < [mm] \varepsilon [/mm] folgt.
f(x) = [mm] \bruch{1}{x^{2}+4}, [/mm]  D(f) = [mm] \IR [/mm]

Hallo zusammen!

Ich habe ein ähnliches Problem in diesem Forum gefunden, jedoch stellen sich mir auch bei dem noch einige Fragen.

Frage 1: Was für einen Ansatz sollte für diese Aufgabe gewählt werden?

Vielen dank schon im vorhinein für alle Antworten!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Delta-Epsilon Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 15.11.2018
Autor: fred97


> Geben Sie für die nachstehende Funktion zu jedem
> [mm]\varepsilon[/mm] > 0 ein [mm]\delta[/mm] > 0 an, sodass aus |x − x0| <
> [mm]\delta[/mm] die Beziehung |f(x) − f(x0)| < [mm]\varepsilon[/mm] folgt.
>  f(x) = [mm]\bruch{1}{x^{2}+4},[/mm]  D(f) = [mm]\IR[/mm]
>  Hallo zusammen!
>  
> Ich habe ein ähnliches
> Problem in diesem Forum
> gefunden, jedoch stellen sich mir auch bei dem noch einige
> Fragen.
>  
> Frage 1: Was für einen Ansatz sollte für diese Aufgabe
> gewählt werden?
>  
> Vielen dank schon im vorhinein für alle Antworten!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Zunächst schaut man sich an:

[mm] $|f(x)-f(x_0)|$. [/mm] Bei obiger Funktion f ist das (mit etwas Bruchrechnen)

[mm] $|f(x)-f(x_0)|=\frac{|x^2-x_0^2|}{(x^2+4)(x_0^2+4)}$. [/mm] Der Nenner im letzen Bruch ist $ [mm] \ge [/mm]  1$, also haben wir

[mm] $|f(x)-f(x_0)| \le |x^2-x_0^2|=|(x+x_0)(x-x_0)| \le (|x|+|x_0|)|x-x_0|$. [/mm]

Da wir am Verhalten von f nur in der Nähe von [mm] x_0 [/mm] interessiert sind, können wir [mm] $|x-x_0| [/mm] <1$ annehmen. Dann ist

[mm] $|x|=|x-x_0+x_0| \le |x-x_0|+|x_0| \le 1+|x_0|$. [/mm] Wir setzen [mm] $c:=1+|x_0|$ [/mm] und bekommen für [mm] $|x-x_0| [/mm] <1$  die Abschätzung

[mm] $|f(x)-f(x_0)| \le c|x-x_0|$. [/mm]

Ist nun $ [mm] \epsilon [/mm] >0$, so überzeuge Dich davon , dass [mm] $\delta:= \min\{1, \epsilon/c\}$ [/mm] das Gewünschte leistet.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]