matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichtetransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Dichtetransformation
Dichtetransformation < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtetransformation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:07 Di 06.03.2012
Autor: Krypto

Aufgabe
Seien Y und Y unabhängig und [mm] Exp(\beta)-verteilt. [/mm] Zu zeigen sei nun, dass [mm] P(\bruch{X}{X+Y} \in [/mm] [a,b]) = b - a für 0 [mm] \le [/mm] a < b [mm] \le [/mm] 1 gilt.

Hallo,

als Hinweis war noch gegeben, dass man mittels Dichtetransformation die gemeinsame Verteilung von X+Y und [mm] \bruch{X}{X+Y} [/mm] bestimmen soll.

Also, das habe ich mal versucht:

g: (u,v) [mm] \mapsto [/mm] (u+v, [mm] \bruch{u}{u+v}) [/mm]
[mm] g^{-1}: [/mm] (x,y) [mm] \mapsto [/mm] (xy,x(1-y))

J(x,y) = [mm] \pmat{ y & x \\ 1-y & -x } [/mm]

det(J(x,y)) = [mm] \vmat{ y & x \\ 1-y & -x } [/mm] = -x

[mm] f(g^{-1}(x,y))*|det(J(x,y)| [/mm] = f(xy,x(1-y))*x = [mm] x*\beta^2*e^{-\beta*(xy-x(1-y))} [/mm] = [mm] x*\beta^2*e^{-\beta x} [/mm] = [mm] f_{u+v,\bruch{u}{u+v}}(x,y) [/mm]

Stimmt das so oder bin ich total auf dem Holzweg? Wie würde es denn dann weitergehen?

Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 06.03.2012
Autor: luis52

Moin Krypto,

[willkommenmr]


> Stimmt das so oder bin ich total auf dem Holzweg?

Sieht gut aus.

> Wie   würde es denn dann weitergehen?

Wende den Transformationssatz fuer Dichten an.

vg Luis



Bezug
                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 07.03.2012
Autor: Krypto

Das verstehe ich leider nicht, ich dachte, so etwas in der Art hätte ich schon getan...

Bezug
                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 07.03.2012
Autor: luis52


> ich dachte, so etwas in der  Art hätte ich schon getan...

"In der Art" schon. Was aber ist beispielsweise $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] $?

vg Luis


Bezug
                                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 07.03.2012
Autor: Krypto

Hallo,

also, ich habe da noch mal drüber nachgedacht. Ich verstehe die erste Antwort zwar immer noch nicht, aber ich komme zu folgendem:

Meine errechnete Dichte hängt ja nicht von y ab, also wäre die Dichte von [mm] \bruch{X}{X+Y} [/mm] dann einfach 1?

Dann bekäme ich

[mm] P(\bruch{X}{X+Y} \in [/mm] [a,b]) = [mm] \integral_{a}^{b}{1 dx} [/mm] = b - a

Ist es das dann schon?

Viele Grüße


Bezug
                                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 08.03.2012
Autor: luis52

Und ich verstehe deine Antwort nicht. Was ist denn nun $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] $?

Du solltest das Ganze mal sauber aufschreiben: Gegeben ist die gemeinsame Dichte von $(X,Y)_$, naemlich

[mm] $f_{x,y}(x,y)=\beta^2\exp[-\beta(x+y)]\red{\chi_{(0,\infty)}(x)\chi_{(0,\infty)}(y)}$. [/mm]

Darin bezeichnet [mm] $\chi_M$ [/mm] die Indikatorfunktion der Menge $M_$, also [mm] $\chi_M(x)=1$ [/mm] fuer [mm] $x\in [/mm] M$ und  [mm] $\chi_M(x)=0$ [/mm] fuer [mm] $x\not\in [/mm] M$.

Wende jetzt den Transformationssatz unter Beruecksichtigung der Indikatorfunktionen an.

Die Schreibweise mit der Indikatorfunktion ermoeglicht  in der Regel, dass man spaeter genau sagen kann, wo  $ [mm] f_{u+v,\bruch{u}{u+v}}(r,s)>0$ [/mm] gilt, was also der Traeger des transformierten Vektors ist. Wenn du also korrekt arbeitest, wirst du $ [mm] f_{u+v,\bruch{u}{u+v}}(-4711,-4711) [/mm] =0$ bestaetigen.

vg Luis




Bezug
                                                
Bezug
Dichtetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Do 08.03.2012
Autor: Krypto

Hallo,

dann habe ich mir das wohl zu einfach gemacht. Ich dachte, wenn U+V und [mm] \bruch{U}{U+V} [/mm] unabhängig sind, dann würde gelten
[mm] f_{U+V,\bruch{U}{U+V}}(x,y) [/mm]  = [mm] f_{U+V}(x)*f_{\bruch{U}{U+V}}(y) [/mm]
und so bin ich zu meinem Ergebnis gekommen. Stimmt das also nicht? Warum denn nicht?

Viele Grüße



Bezug
                                                        
Bezug
Dichtetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 08.03.2012
Autor: luis52

Moin,

Warum sollten $U+V_$ und $ [mm] \bruch{U}{U+V} [/mm] $ unabhaengig sein? In beiden Zufallsvariablen stecken dieselben "Zutaten".

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]