matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenDifferentialgleichung1.Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Differentialgleichung1.Ordnung
Differentialgleichung1.Ordnung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung1.Ordnung: Tipp
Status: (Frage) überfällig Status 
Datum: 21:45 Fr 17.05.2013
Autor: photonendusche

Aufgabe
Bei einer Inversionswetterlage liegen warme über kalten Luftmassen, so dass der vertikale Luftaustausch behindert wird. Sind auch noch horizontale Windgeschwindigkeiten gering, kommt es zu einer Ansammlung luftverschmutzender Komponenten in der Atmosphäre, insbesondere von Schwefelwasserstoff (H2S) und Schwefeldioxid(SO2). Hierbei ist zu beachten, , dass H2S zu SO2 und SO2 zu einem uns nicht intersierenden Sulfat mit unterschiedlichen Reaktionsraten [mm] k_{1} [/mm] und [mm] k_{2} [/mm] oxidiert.
Stelle ein DGL System zur Untersuchung des Prozesses bei ensprechenden Emissionsraten [mm] \varepsilon_{H2S} [/mm] und [mm] \varepsilon_{SO2} [/mm] auf.
Sei [mm] t_{0} [/mm] ein Zeitpunkt, zu dem die Mengen [mm] m_{H2S}(t_{0}) [/mm] und [mm] m_{SO2}(t_{0}) [/mm] gemessen werden. Wie groß werden die Mengen zu einem Zeitpunkt [mm] t_{1}\ge t_{0} [/mm] sein?
Zeige, dass bei anhaltender Wetterlage,der H2S und S02 Gehalt sich stabilisiert, so dass bei genügend großen Emissionsraten die Gesundheit gefährdet sein kann.

Mein Ansatz lautet:
[mm] m'_{h2S}(t)=-k_{1}m_{h2s}(t)+\varepsilon_{h2s} [/mm] und
m'_{s02}(t) [mm] =k_{1}m_{h2s}(t) -k_{2}m_{so2}(t)+\varepsilon_{so2} [/mm]
Daraus ergibt sich:
[mm] \pmat{ m'_{h2s}(t)\\ m'_{so2}(t) }= \pmat{ -k_{1} & 0 \\ k_{1} & -k_{2} } [/mm] * [mm] \pmat{ m_{h2s}(t) \\ m_{so2}(t)}+ \pmat{\varepsilon_{h2s} \\ \varepsilon_{so2}} [/mm]
Wie mache ich jetzt aber weiter?

        
Bezug
Differentialgleichung1.Ordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 19.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Differentialgleichung1.Ordnung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mi 22.05.2013
Autor: photonendusche

Aufgabe
Hat jemand vielleicht ne Idee?




Bezug
        
Bezug
Differentialgleichung1.Ordnung: Lob
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Fr 24.05.2013
Autor: DrHensen

sieht schon richtig aus! weiter so!

Bezug
        
Bezug
Differentialgleichung1.Ordnung: Auflösung des Rätsels
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Fr 24.05.2013
Autor: DrHensen

M streicht sich heraus, k kannst Du kürzen und danach nach e  auflösen. Ganz einfach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]