matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:27 Sa 26.12.2015
Autor: Martin_Ph

Aufgabe
a) Gegeben sei das Anfangswertproblem
y'= 2xy = f(x,y(x)), y(0)=1 für [mm] x\in [/mm] I [mm] \subseteq\IR [/mm]

Weiter sei die Iterationsfolge [mm] (y_{n}(x))_{n\in\IN} [/mm] gegeben durch
[mm] y_{0}(x) [/mm] = 1 für [mm] x\in [/mm] I und [mm] y_{n+1}(x) [/mm] = [mm] y_{0}(x) [/mm] + [mm] \integral_{0}^{x}{f(t,y_{n}(t)) dt} [/mm] für alle n = 0,1,2,3,.....

i) Berechnen Sie [mm] y_{n}(x) [/mm] für n = 0,1,2

ii) Leiten Sie daraus eine allgemeine Formel für [mm] y_{n}(x) [/mm] her und beweisen Sie diese mit einer vollständigen Induktion über n

iii) Bestimmen Sie [mm] \limes_{n\rightarrow\infty}y_{n}(x) [/mm] für [mm] x\in [/mm] I.

iv) Zeigen Sie, dass dieser Limes tatsächlich eine Lösung des AWP ist.


b) Zeigen Sie, dass sich eine DGL n-ter Ordnung, [mm] y^{n}= F(t,y,y',...,y^{(n-1)}), [/mm] als ein Differentialgleichungssystem 1. Ordnung der Form
x'= f(t,x) mit f(t,x) = [mm] (x_{2},...,x_{n},F(t,x))^{T} [/mm]
schreiben lässt

ZU a):

i) und ii): Diese 2 Punkte waren kein Problem. Komm auf [mm] y_{n}(x)=\summe_{i=1}^{n}\bruch{x^{2i}}{i!}. [/mm] Induktionsbeweis hat auch gut hingehauen

iii) Hier weiß ich nicht wie ich es rechnerisch zeige aber meines Erachtens müsste für den Grenzwert [mm] e^{x^{2}} [/mm] rauskommen, was sich in iv) auch bestätigt. Frage ist also wie zeige ich as rechnerisch?


iv)  

y'=2xy

y identisch 0 ist Lsg der DGL aber keine Lag des AWP

y'=2xy [mm] \Rightarrow [/mm] ... [mm] \Rightarrow [/mm] y = C [mm] e^{x^{2}} [/mm]

mit AWP folgt C=1 [mm] \Rightarrow [/mm] y = [mm] e^{x^{2}} [/mm] ist Lsg des AWP

Aufgabe b) folgt noch bisher noch keine Idee

        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 26.12.2015
Autor: Jule2

Also bei der iii) hast du das Ergebnis doch fast geschenkt!!
Denn wenn du dir deine Lsg zu ii) anschaust und n gegen unendlich schickst ist dass doch gerade die reihenentwicklung der e-Funktion!!!
LG

Bezug
                
Bezug
Differentialgleichungen: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 26.12.2015
Autor: Martin_Ph

Aufgabe
siehe oben

ja das stimmt hab ich im Grunde auch gesehen
Kann man das so aufschreiben:

[mm] \limes_{n\rightarrow\infty}y_{n}(x)=\summe_{n=0}^{\infty}\bruch{x^{2n}}{n!}=\summe_{n=0}^{\infty}\bruch{(x^{2})^{n}}{n!}=e^{x^{2}} [/mm]

Bezug
                        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 26.12.2015
Autor: fred97


> siehe oben
>  ja das stimmt hab ich im Grunde auch gesehen
> Kann man das so aufschreiben:
>  
> [mm]\limes_{n\rightarrow\infty}y_{n}(x)=\summe_{n=0}^{\infty}\bruch{x^{2n}}{n!}=\summe_{n=0}^{\infty}\bruch{(x^{2})^{n}}{n!}=e^{x^{2}}[/mm]

Ja,genau so

Fred

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]