matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferentialoperatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Differentialoperatoren
Differentialoperatoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 09.01.2012
Autor: dodo4ever

Hallo Matheraum und vielen Dank für deine Tolle Begleitung durch das Studium :)

Ich habe leider (mal wieder) ein kleines Problem mit folgender Aufgabe:

Es seien [mm] u:\IR^3 \to \IR,(x,y,z)^T \mapsto \wurzel{x^+2y^2+z^2} [/mm]

und

[mm] \vec{v}:\IR^3 \backslash \{\vec{0}\} \to \IR^3, \vektor{x \\ y \\ z} \mapsto \bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z} [/mm]

Es gibt nun 2 Aufgabenstellungen.

1. Aufgabenstellung:

grad u und div [mm] \vec{v} [/mm] berechnen

2. Aufgabenstellung:

Abbildungen u und [mm] \vec{v} [/mm] in Kugelkoordinaten angeben und mit Hilfe der Formeln für Differentialoperatoren in Kugelkoordinaten erneut grad u und div [mm] \vec{v} [/mm] berechnen. Anschließend 1. Aufgabenstellung und 2. Aufgabenstellung verlgeichen.

Ich wollte nun zunächst zur 1. Aufgabenstellung kommen.

Es ergibt sich für grad [mm] u=\vektor{\bruch{x}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{y}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{z}{(x^2+y^2+z^2)^{\bruch{1}{2}}}} [/mm]

Nun wollte ich div [mm] \vec{v} [/mm] berechnen. Hierzu habe ich folgende Frage:

Durch [mm] u:\IR^3 \to \IR [/mm] wird ja meiner Meinung ein skalares Feld beschrieben. Darf ich nun auch schreiben [mm] u(x,y,z)=\wurzel{x^2+y^2+z^2} [/mm] ?

Es würde sich ja somit ergeben:

[mm] \bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z}=\bruch{1}{\wurzel(x^2+y^2+z^2)} \vektor{x \\ y \\ z}=\vektor{\bruch{x}{\wurzel{x^2+y^2+z^2}} \\ \bruch{y}{\wurzel{x^2+y^2+z^2}} \\ \bruch{z}{\wurzel{x^2+y^2+z^2}}} [/mm]

mfg dodo4ever

        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 09.01.2012
Autor: MathePower

Hallo dodo4ever,

> Hallo Matheraum und vielen Dank für deine Tolle Begleitung
> durch das Studium :)
>  
> Ich habe leider (mal wieder) ein kleines Problem mit
> folgender Aufgabe:
>  
> Es seien [mm]u:\IR^3 \to \IR,(x,y,z)^T \mapsto \wurzel{x^2+y^2+z^2}[/mm]
>  
> und
>  
> [mm]\vec{v}:\IR^3 \backslash \{\vec{0}\} \to \IR^3, \vektor{x \\ y \\ z} \mapsto \bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z}[/mm]
>  
> Es gibt nun 2 Aufgabenstellungen.
>  
> 1. Aufgabenstellung:
>  
> grad u und div [mm]\vec{v}[/mm] berechnen
>  
> 2. Aufgabenstellung:
>  
> Abbildungen u und [mm]\vec{v}[/mm] in Kugelkoordinaten angeben und
> mit Hilfe der Formeln für Differentialoperatoren in
> Kugelkoordinaten erneut grad u und div [mm]\vec{v}[/mm] berechnen.
> Anschließend 1. Aufgabenstellung und 2. Aufgabenstellung
> verlgeichen.
>  
> Ich wollte nun zunächst zur 1. Aufgabenstellung kommen.
>  
> Es ergibt sich für grad
> [mm]u=\vektor{\bruch{x}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{y}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{z}{(x^2+y^2+z^2)^{\bruch{1}{2}}}}[/mm]
>  


[ok]


> Nun wollte ich div [mm]\vec{v}[/mm] berechnen. Hierzu habe ich
> folgende Frage:
>  
> Durch [mm]u:\IR^3 \to \IR[/mm] wird ja meiner Meinung ein skalares
> Feld beschrieben. Darf ich nun auch schreiben
> [mm]u(x,y,z)=\wurzel{x^2+y^2+z^2}[/mm] ?
>  


Ja.


> Es würde sich ja somit ergeben:
>  
> [mm]\bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z}=\bruch{1}{\wurzel(x^2+y^2+z^2)} \vektor{x \\ y \\ z}=\vektor{\bruch{x}{\wurzel{x^2+y^2+z^2}} \\ \bruch{y}{\wurzel{x^2+y^2+z^2}} \\ \bruch{z}{\wurzel{x^2+y^2+z^2}}}[/mm]
>  
> mfg dodo4ever



Gruss
MathePower

Bezug
                
Bezug
Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mo 09.01.2012
Autor: dodo4ever

Hallo Mathepower und thanks for your helpy

Habe nun eine Lösung für die Komplette Aufgabe und würde sie ganz gerne der Vollständigkeit halber hochladen.

Es seien [mm] u:\IR^3 \to \IR,(x,y,z)^T \mapsto \wurzel{x^2+y^2+z^2} [/mm] und [mm] \vec{v}:\IR^3 \backslash \{\vec{0}\} \to \IR^3, \vektor{x \\ y \\ z} \mapsto \bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z}, [/mm] wobei wir ja nun schon geklärt hatten, dass [mm] u(x,y,z)=\wurzel{x^2+y^2+z^2} [/mm]

1. Aufgabenstellung:

grad u und div [mm] \vec{v} [/mm] in kartesischen Koordinaten

2. Aufgabenstellung:

Abbildungen u und [mm] \vec{v} [/mm] in Kugelkoordinaten und anschließend mit 1. Aufgabenstellung vergleichen.

Ich komme zunächst zur 1. Aufgabe:

grad [mm] u=\vektor{\bruch{\partial u}{\partial x} \\ \bruch{\partial u}{\partial y} \\ \bruch{\partial u}{\partial z}}=\vektor{\bruch{x}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{y}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{z}{(x^2+y^2+z^2)^{\bruch{1}{2}}}}=\bruch{1}{(x^2+y^2+z^2)^\bruch{1}{2}}\vektor{x \\ y \\ z} [/mm]

Und da [mm] u(x,y,z)=\wurzel{x^2+y^2+z^2}=(x^2+y^2+z^2)^{\bruch{1}{2}} [/mm] ergibt sich somit ja auch [mm] \vec{v}=\bruch{1}{(x^2+y^2+z^2)^\bruch{1}{2}}\vektor{x \\ y \\ z} [/mm]

Somit gilt:

grad [mm] u=\vec{v} [/mm] und somit gilt div [mm] \vec{v}=div [/mm] (grad u)

Somit haben wir: div (grad [mm] u)=\bruch{y^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+y^2}{(x^2+y^2+z^2)^\bruch{3}{2}} [/mm]


Kommen wir zur 2. Aufgabenstellung:

in Kugelkoordinaten gilt:

[mm] x=rsin\theta cos\phi [/mm]
[mm] y=rsin\theta sin\phi [/mm]
[mm] z=rcos\theta [/mm]


Es sei nun:

[mm] U(r,\theta,\phi)=r [/mm]

Somit ergibt sich für grad [mm] U=\bruch{\partial U}{\partial r}\vec{e_r}+\bruch{1}{r}\bruch{\partial U}{\partial \theta}\vec{e_\theta}+\bruch{1}{r sin\theta}\bruch{\partial U}{\partial \phi}\vec{e_\phi}=\bruch{\partial U}{\partial r}\vec{e_r}+0+0=1\vec{e_r} [/mm]

Ein Vergleich liefert:

grad [mm] u(x,y,z)=\bruch{1}{(r)^\bruch{1}{2}}\vektor{r sin\theta cos\phi \\ r sin\theta sin\phi \\ r cos\theta}=\bruch{r}{(r)^\bruch{1}{2}}\vektor{sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta}=\bruch{r}{(r)^\bruch{1}{2}}\vec{e_r} [/mm]

Funktioniert das dann überhaupt??? Denn es muss doch eigentlich [mm] 1\vec{e_r} [/mm] herauskommen oder?

mfg dodo4ever

Bezug
                        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mo 09.01.2012
Autor: MathePower

Hallo dodo4ever,

> Hallo Mathepower und thanks for your helpy
>  
> Habe nun eine Lösung für die Komplette Aufgabe und würde
> sie ganz gerne der Vollständigkeit halber hochladen.
>  
> Es seien [mm]u:\IR^3 \to \IR,(x,y,z)^T \mapsto \wurzel{x^2+y^2+z^2}[/mm]
> und [mm]\vec{v}:\IR^3 \backslash \{\vec{0}\} \to \IR^3, \vektor{x \\ y \\ z} \mapsto \bruch{1}{u(x,y,z)} \vektor{x \\ y \\ z},[/mm]
> wobei wir ja nun schon geklärt hatten, dass
> [mm]u(x,y,z)=\wurzel{x^2+y^2+z^2}[/mm]
>  
> 1. Aufgabenstellung:
>  
> grad u und div [mm]\vec{v}[/mm] in kartesischen Koordinaten
>  
> 2. Aufgabenstellung:
>  
> Abbildungen u und [mm]\vec{v}[/mm] in Kugelkoordinaten und
> anschließend mit 1. Aufgabenstellung vergleichen.
>  
> Ich komme zunächst zur 1. Aufgabe:
>  
> grad [mm]u=\vektor{\bruch{\partial u}{\partial x} \\ \bruch{\partial u}{\partial y} \\ \bruch{\partial u}{\partial z}}=\vektor{\bruch{x}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{y}{(x^2+y^2+z^2)^{\bruch{1}{2}}} \\ \bruch{z}{(x^2+y^2+z^2)^{\bruch{1}{2}}}}=\bruch{1}{(x^2+y^2+z^2)^\bruch{1}{2}}\vektor{x \\ y \\ z}[/mm]
>  
> Und da
> [mm]u(x,y,z)=\wurzel{x^2+y^2+z^2}=(x^2+y^2+z^2)^{\bruch{1}{2}}[/mm]
> ergibt sich somit ja auch
> [mm]\vec{v}=\bruch{1}{(x^2+y^2+z^2)^\bruch{1}{2}}\vektor{x \\ y \\ z}[/mm]
>  
> Somit gilt:
>  
> grad [mm]u=\vec{v}[/mm] und somit gilt div [mm]\vec{v}=div[/mm] (grad u)
>  
> Somit haben wir: div (grad
> [mm]u)=\bruch{y^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+y^2}{(x^2+y^2+z^2)^\bruch{3}{2}}[/mm]
>  


Das kann man noch zusammenfassen. [ok]


>
> Kommen wir zur 2. Aufgabenstellung:
>  
> in Kugelkoordinaten gilt:
>  
> [mm]x=rsin\theta cos\phi[/mm]
>  [mm]y=rsin\theta sin\phi[/mm]
>  [mm]z=rcos\theta[/mm]
>  
>
> Es sei nun:
>  
> [mm]U(r,\theta,\phi)=r[/mm]
>  
> Somit ergibt sich für grad [mm]U=\bruch{\partial U}{\partial r}\vec{e_r}+\bruch{1}{r}\bruch{\partial U}{\partial \theta}\vec{e_\theta}+\bruch{1}{r sin\theta}\bruch{\partial U}{\partial \phi}\vec{e_\phi}=\bruch{\partial U}{\partial r}\vec{e_r}+0+0=1\vec{e_r}[/mm]
>  
> Ein Vergleich liefert:
>  
> grad [mm]u(x,y,z)=\bruch{1}{(r)^\bruch{1}{2}}\vektor{r sin\theta cos\phi \\ r sin\theta sin\phi \\ r cos\theta}=\bruch{r}{(r)^\bruch{1}{2}}\vektor{sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta}=\bruch{r}{(r)^\bruch{1}{2}}\vec{e_r}[/mm]
>  


Es ist doch [mm]r=\wurzel{x^{2}+y^{2}+z^{2}}[/mm]

Daher muss hier stehen:

[mm]\operatorname{grad} \ u(x,y,z)=\bruch{1}{\blue{r}}\vektor{r sin\theta cos\phi \\ r sin\theta sin\phi \\ r cos\theta}=\bruch{r}{\blue{r}}\vektor{sin\theta cos\phi \\ sin\theta sin\phi \\ cos\theta}=\bruch{r}{\blue{r}}\vec{e_r}=\vec{e_r}[/mm]


> Funktioniert das dann überhaupt??? Denn es muss doch
> eigentlich [mm]1\vec{e_r}[/mm] herauskommen oder?
>  
> mfg dodo4ever


Grus
MathePower

Bezug
                                
Bezug
Differentialoperatoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 09.01.2012
Autor: dodo4ever

Oh ich Schüssel hab's in u(x,y,z) eingesetzt nicht in grad u(x,y,z) ...

Danke dir

MfG dodo4ever

Bezug
                                
Bezug
Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Di 10.01.2012
Autor: dodo4ever

Hallo Matheraum.

Ich bhabe gerade nochmal deinen Beitrag gelesen und du schreibst, ich könnte [mm] \bruch{y^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+y^2}{(x^2+y^2+z^2)^\bruch{3}{2}} [/mm] noch weiter zusammenfassen.

Doch leider kann ich leider noch nicht so ganz nachvollziehen, was genau ich da noch zusammenfassen kann. Außer das ich eventuell [mm] (x^2+y^2+z^2)^{\bruch{3}{2}} [/mm] ausschreiben könnte.

mfg dodo4ever

Bezug
                                        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Di 10.01.2012
Autor: fred97

Bruchrechnen:

$ [mm] \bruch{y^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}+\bruch{x^2+y^2}{(x^2+y^2+z^2)^\bruch{3}{2}} [/mm] =2* [mm] \bruch{x^2+y^2+z^2}{(x^2+y^2+z^2)^\bruch{3}{2}}= \bruch{2}{(x^2+y^2+z^2)^\bruch{1}{2}}$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]