matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDifferenzengleichung allg.Lsg.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Differenzengleichung allg.Lsg.
Differenzengleichung allg.Lsg. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung allg.Lsg.: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Sa 30.07.2005
Autor: Funny

Hallo,

könnte mir jemand von Euch sagen, wie ich z.B. von folgender Differenzengleichung die allgemeine Lösung bestimme? Hatte so ne Aufgabe nämlich noch nie. Danke

yn+4 - 3yn+3 - 6yn+2 + 28yn+1 - 24yn = 0

(P.S.: Die ganzen "n´s" sollten natürlich kleiner geschrieben sein, habe ich auf die schnelle nicht hinbekommen. Sorry)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differenzengleichung allg.Lsg.: Charakteristisches Polynom
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 30.07.2005
Autor: Loddar

Hallo Funny,

zunächst einmal [willkommenmr] !!


> yn+4 - 3yn+3 - 6yn+2 + 28yn+1 - 24yn = 0
>  
> (P.S.: Die ganzen "n´s" sollten natürlich kleiner
> geschrieben sein, habe ich auf die schnelle nicht
> hinbekommen. Sorry)

Schreibe einfach mal y_{n+4} , daraus wird dann [mm]y_{n+4}[/mm] !


Nun zu Deiner Aufgabe ...

Lies Dir doch mal diese Frage mit Antwort durch!


Du mußt aus Deiner Differenzengleichung also zunächst das charakteristische Polynom aufstellen und die Nullstellen bestimmen.

[mm] $y_{n+4} [/mm] - [mm] 3*y_{n+3} [/mm] - [mm] 6*y_{n+2} [/mm] + [mm] 28*y_{n+1} [/mm] - [mm] 24*y_{n} [/mm] \ = \ 0$

[mm] $\Rightarrow$ $k^4 [/mm] - [mm] 3*k^3 [/mm] - [mm] 6*k^2 [/mm] + 28*k - 24 \ = \ 0$

Durch Probieren/Raten (ganzzahlige Teiler der Absolutgliedes $-24_$) und MBPolynomdivision erhält man folgende Nullstellen:

[mm] $k_{1,2,3} [/mm] \ = \ 2$

[mm] $k_4 [/mm] \ = \ -3$


Damit wird Deine Folgenvorschrift zu:

[mm] $y_n [/mm] \ = \ [mm] a*2^n [/mm] + [mm] b*n*2^n [/mm] + [mm] c*n^2*2^n [/mm] + [mm] d*(-3)^n$ [/mm]


Durch Einsetzen der Anfangswerte (die Du uns leider nicht verraten hast), kannst Du dann über das entstehende lineare Gleichungssystem die entsprechenden Koeffizienten $a_$ , $b_$ , $c_$ und $d_$ bestimmen.


Gruß
Loddar


Bezug
                
Bezug
Differenzengleichung allg.Lsg.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Sa 30.07.2005
Autor: Funny

Erstmal danke für die schnelle Antwort.
Es sind keine Anfangswerte gegeben, da die Gleichung nicht gelöst werden muss. Es soll "lediglich" die allgemeine Lösung aufgezeigt werden.
Für Differenzengleichungen 1.Ordnung kann ich das ja noch (= homogene + partielle Lösung), aber hierfür habe ich keine Ahnung...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]