matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikDifferenzialgleichung (Jet)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Differenzialgleichung (Jet)
Differenzialgleichung (Jet) < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung (Jet): Aufgabenstellung und Frage
Status: (Frage) beantwortet Status 
Datum: 20:33 Mo 10.11.2008
Autor: kremitdifrog

Aufgabe
James Bond hat aus dem SPECTRE-Hauptquartier den gestohlenen Prototypen eines neuen Harrier-Kampfjets (Masse: m=7t) zurückgestohlen. Leider wurde das Flugzeug auf der Flucht schwer beschädigt, sodass 007 gezwungen ist, auf dem Flugzeugträger HMS Invincible notzulanden. Da die Landebahn nur eine Länge von [mm] l=200m [/mm] hat, und Bond mit einer Geschwindigkeit von [mm] v_0 = 300km/h [/mm] landen muss, wurde die Landebahn mit einem von Q erfundenen Super-Bremsschaum eingesprüht, welche eine Bremskraft auf ein landendes Flugzeug proportional zu seiner Geschwindigkeit ausübt. Der Bremskoeffizient c des Super-Schaumes wurde leider noch nicht genau bestimmt.
a) Stellen Sie die allgemeine Bewegungsgleichung für dieses Szenario auf!
b) Bestimmen Sie die Fundamentallösungen der Bewegungsgleichung und stellen Sie die allgemeine Lösung auf!
c) Nehmen Sie an, dass Bond den Beginn der Landebahn zum Zeitpunkt t=0 mit der Geschwindigkeit [mm] v_0 [/mm] erreicht und bestimmen Sie die Weg-Zeit-Funktion seines Jets!
d) Nach welcher Strecke und welcher Zeit kommt das Flugzeug zum Stillstand?
e) Setzen Sie nun die Zahlenwerte ein und bestimmen Sie, welchen Wert der Bremskoeffizient von Qs Super-Schaum haben muss, damit der Jet korrekterweise genau am Ende der Landebahn zum Stehen kommt!

Meine Idee war jetzt für die Bewegungsgleichung
[mm]s(t)= v_0 \cdot t + 1/2 s''(t) \cdot t^2 [/mm]. Die Bremskraft soll proportional zur Geschwindigkeit sein, also [mm] F(t)= -m \cdot a(t) = c \cdot v(t) [/mm] also [mm] s''(t) = - \bruch {c} {m} \cdot s'(t) [/mm]. Das kann man ja jetzt in die erste Gleichung einsetzen: [mm] s(t)= v_0 \cdot t - \bruch {c} {2m} s'(t) \cdot t^2 [/mm]. Jetzt müsste ich ja erstmal die allgemeine Lösung der homogenen DGL (Differenzialgleichung) bestimmen. Dafür erhalte ich
[mm] s(t)= A \cdot e^{-\bruch {2m} {ct}} [/mm]. Meine Fragen:
Ist mein Ansatz überhaupt richtig? Ist meine Lösung richtig? Wie kann ich die Lösung der inhomogenen DGL bestimmen?

        
Bezug
Differenzialgleichung (Jet): Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mo 10.11.2008
Autor: leduart

Hallo
Deine Gleichung fuer s(t) gilt doch nur fur konstante Beschleunigun. schon, dass du da s'' hingeschrieben hast ist falsch.
richtig ist die Kraftgleichung F=-c*s'(t)
und F=m*s''(t)  Anfangsbedingung [mm] v=v_0, [/mm] s=0
Dann die einfache Dgl loesen.
gruss leduart

Bezug
                
Bezug
Differenzialgleichung (Jet): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Mo 10.11.2008
Autor: kremitdifrog

Okay danke, dann haben wirs jetzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]