matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Differenzierbarkeit zeigen
Differenzierbarkeit zeigen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 So 16.07.2017
Autor: Die_Suedkurve

Hallo zusammen,

ich stehe vor einem neuen Problem:

Sei $f: [mm] \IR \to \IR$ [/mm] eine Funktion mit den folgenden Eigenschaften:
1.) $f$ ist diff'bar auf [mm] $\IR \backslash \{a\}$ [/mm] für ein $a [mm] \in \IR$. [/mm]
2.) Es existiert [mm] $\limes_{x \uparrow a} [/mm] f'(x) = [mm] \gamma$. [/mm]

Behauptung: f diff'bar in a mit $f'(a) = [mm] \gamma$. [/mm]

Ich habe einen Beweis erstellt, aber frage mich, ob der so richtig ist.

Beweis:
Sei [mm] $\epsilon [/mm] > 0$ und zunächst $h [mm] \in \IR, [/mm] \ x [mm] \in \IR \backslash \{a\}$. [/mm]
Es gilt:

[mm] $\left | \frac{f(a + h) - f(a)}{h} - \gamma \right [/mm] | [mm] \le \left | \frac{f(a + h) - f(a)}{h} - \frac{f(x + h) - f(x)}{h} \right [/mm] | + [mm] \left | \frac{f(x + h) - f(x)}{h} - f'(x) \right [/mm] | + [mm] \left | f'(x) - \gamma \right [/mm] |$.

1.) Aus [mm] $\limes_{x \uparrow a} [/mm] f'(x) = [mm] \gamma$ [/mm] folgt: [mm] $\exists [/mm] \ [mm] \delta [/mm] > 0 : \ [mm] \forall [/mm] \ x [mm] \in [/mm] (a - [mm] \delta, [/mm] a): [mm] \left | f'(x) - \gamma \right [/mm] | < [mm] \frac{\epsilon}{2}$ [/mm]

2.) [mm] $\forall [/mm] \ x [mm] \in [/mm] (a - [mm] \delta, [/mm] a)$ ist f diff'bar in $x$: [mm] $\exists [/mm] \ [mm] \delta' [/mm] > 0 : \ [mm] \forall [/mm] \ h [mm] \in (-\delta', \delta'): \left | \frac{f(x + h) - f(x)}{h} - f'(x) \right [/mm] | < [mm] \frac{\epsilon}{2}$ [/mm]

Damit folgt:

[mm] $\left | \frac{f(a + h) - f(a)}{h} - \gamma \right [/mm] | < [mm] \left | \frac{f(a + h) - f(a)}{h} - \frac{f(x + h) - f(x)}{h} \right [/mm] | + [mm] \epsilon, \quad \forall [/mm] \ x [mm] \in [/mm] (a - [mm] \delta, [/mm] a), h [mm] \in (-\delta', \delta')$. [/mm]

Nun ist $f$ stetig und es folgt mit [mm] $\delta \downarrow [/mm] 0$:

[mm] $\left | \frac{f(a + h) - f(a)}{h} - \gamma \right [/mm] | < [mm] \epsilon$ [/mm] für $h [mm] \in (-\delta', \delta')$. [/mm]

Passt das so?

Grüße
Die_Suedkurve

        
Bezug
Differenzierbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 16.07.2017
Autor: fred97


> Hallo zusammen,
>  
> ich stehe vor einem neuen Problem:
>  
> Sei [mm]f: \IR \to \IR[/mm] eine Funktion mit den folgenden
> Eigenschaften:
>  1.) [mm]f[/mm] ist diff'bar auf [mm]\IR \backslash \{a\}[/mm] für ein [mm]a \in \IR[/mm].
>  
> 2.) Es existiert [mm]\limes_{x \uparrow a} f'(x) = \gamma[/mm].
>  
> Behauptung: f diff'bar in a mit [mm]f'(a) = \gamma[/mm].
>  
> Ich habe einen Beweis erstellt, aber frage mich, ob der so
> richtig ist.
>  
> Beweis:
>  Sei [mm]\epsilon > 0[/mm] und zunächst [mm]h \in \IR, \ x \in \IR \backslash \{a\}[/mm].
>  
> Es gilt:
>  
> [mm]\left | \frac{f(a + h) - f(a)}{h} - \gamma \right | \le \left | \frac{f(a + h) - f(a)}{h} - \frac{f(x + h) - f(x)}{h} \right | + \left | \frac{f(x + h) - f(x)}{h} - f'(x) \right | + \left | f'(x) - \gamma \right |[/mm].
>  
> 1.) Aus [mm]\limes_{x \uparrow a} f'(x) = \gamma[/mm] folgt: [mm]\exists \ \delta > 0 : \ \forall \ x \in (a - \delta, a): \left | f'(x) - \gamma \right | < \frac{\epsilon}{2}[/mm]
>  
> 2.) [mm]\forall \ x \in (a - \delta, a)[/mm] ist f diff'bar in [mm]x[/mm]:
> [mm]\exists \ \delta' > 0 : \ \forall \ h \in (-\delta', \delta'): \left | \frac{f(x + h) - f(x)}{h} - f'(x) \right | < \frac{\epsilon}{2}[/mm]
>  
> Damit folgt:
>  
> [mm]\left | \frac{f(a + h) - f(a)}{h} - \gamma \right | < \left | \frac{f(a + h) - f(a)}{h} - \frac{f(x + h) - f(x)}{h} \right | + \epsilon, \quad \forall \ x \in (a - \delta, a), h \in (-\delta', \delta')[/mm].
>  
> Nun ist [mm]f[/mm] stetig und es folgt mit [mm]\delta \downarrow 0[/mm]:
>  
> [mm]\left | \frac{f(a + h) - f(a)}{h} - \gamma \right | < \epsilon[/mm]
> für [mm]h \in (-\delta', \delta')[/mm].
>  
> Passt das so?

nein. dein [mm] \delta' [/mm] hängt von x ab.

Verwende den Mittelwertsatz


>  
> Grüße
>  Die_Suedkurve


Bezug
                
Bezug
Differenzierbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 So 16.07.2017
Autor: Die_Suedkurve

Hallo fred,

du hast recht. Ich habe die Aussage auch nochmal überarbeitet, weil ich vergessen habe, die Stetigkeit von f in a vorauszusetzen.

Sei $f: [mm] \IR \to \IR$ [/mm] eine Funktion mit den folgenden Eigenschaften:

1.) f diff'bar auf [mm] $\IR \backslash \{ a \}$. [/mm]

2.) [mm] $\exists [/mm] \ [mm] \limes_{x \downarrow a} [/mm] f'(x) =: [mm] \gamma_{a+}$ [/mm] oder [mm] $\limes_{x \uparrow a} [/mm] f'(x) =: [mm] \gamma_{a-}$ [/mm]

3.) f stetig in a.

Dann ist f diff'bar in a mit $f'(a) = [mm] \gamma_{a+} [/mm] = [mm] \gamma_{a-}$. [/mm]

Beweis:

Wir betrachten den Fall, dass [mm] $\limes_{x \downarrow a} [/mm] f'(x) = [mm] \gamma_{a+} [/mm] =: [mm] \gamma$ [/mm] existiert.
Sei $h > 0$. [mm] $f_{| [a, a+h]}$ [/mm] ist stetig und auf $(a, a+h)$ diff'bar.

[mm] $\mbox{Mittelwertsatz} \Rightarrow \exists [/mm] \ [mm] x_h \in [/mm] (a, a+h): [mm] f'(x_h) [/mm] = [mm] \frac{f(a+h) - f(a)}{h}$ [/mm]
[mm] $\Rightarrow \gamma [/mm] = [mm] \limes_{h \downarrow 0} f'(x_h) [/mm] = [mm] \limes_{h \downarrow 0} \frac{f(a+h) - f(a)}{h}$ [/mm]

Weiterhin ist [mm] $f_{| [a-h, a]}$ [/mm] stetig und auf $(a-h,a)$ diff'bar.

[mm] $\mbox{Mittelwertsatz} \Rightarrow \exists [/mm] \ [mm] x_h \in [/mm] (a-h, a): [mm] f'(x_h) [/mm] = [mm] \frac{f(a) - f(a-h)}{h} [/mm] = [mm] \frac{f(a-h) - f(a)}{-h}$ [/mm]
[mm] $\Rightarrow \gamma [/mm] = [mm] \limes_{h \downarrow 0} f'(x_h) [/mm] = [mm] \limes_{h \downarrow 0} \frac{f(a-h) - f(a)}{-h} [/mm] = [mm] \limes_{h \uparrow 0} \frac{f(a+h) - f(a)}{h}$ [/mm]

Damit sind links- und rechtsseitiger Grenzwert des Differenzenquotienten gleich und somit ist f in a diff'bar.

Ist das richtig?

Grüße
Die_Suedkurve

Bezug
                        
Bezug
Differenzierbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:28 Mo 17.07.2017
Autor: fred97


> Hallo fred,
>  
> du hast recht. Ich habe die Aussage auch nochmal
> überarbeitet, weil ich vergessen habe, die Stetigkeit von
> f in a vorauszusetzen.
>  
> Sei [mm]f: \IR \to \IR[/mm] eine Funktion mit den folgenden
> Eigenschaften:
>  
> 1.) f diff'bar auf [mm]\IR \backslash \{ a \}[/mm].
>  
> 2.) [mm]\exists \ \limes_{x \downarrow a} f'(x) =: \gamma_{a+}[/mm]
> oder [mm]\limes_{x \uparrow a} f'(x) =: \gamma_{a-}[/mm]
>  
> 3.) f stetig in a.
>  
> Dann ist f diff'bar in a mit [mm]f'(a) = \gamma_{a+} = \gamma_{a-}[/mm].
>  
> Beweis:
>  
> Wir betrachten den Fall, dass [mm]\limes_{x \downarrow a} f'(x) = \gamma_{a+} =: \gamma[/mm]
> existiert.
>  Sei [mm]h > 0[/mm]. [mm]f_{| [a, a+h]}[/mm] ist stetig und auf [mm](a, a+h)[/mm]
> diff'bar.
>  
> [mm]\mbox{Mittelwertsatz} \Rightarrow \exists \ x_h \in (a, a+h): f'(x_h) = \frac{f(a+h) - f(a)}{h}[/mm]
>  
> [mm]\Rightarrow \gamma = \limes_{h \downarrow 0} f'(x_h) = \limes_{h \downarrow 0} \frac{f(a+h) - f(a)}{h}[/mm]
>  
> Weiterhin ist [mm]f_{| [a-h, a]}[/mm] stetig und auf [mm](a-h,a)[/mm]
> diff'bar.
>  
> [mm]\mbox{Mittelwertsatz} \Rightarrow \exists \ x_h \in (a-h, a): f'(x_h) = \frac{f(a) - f(a-h)}{h} = \frac{f(a-h) - f(a)}{-h}[/mm]
>  
> [mm]\Rightarrow \gamma = \limes_{h \downarrow 0} f'(x_h) = \limes_{h \downarrow 0} \frac{f(a-h) - f(a)}{-h} = \limes_{h \uparrow 0} \frac{f(a+h) - f(a)}{h}[/mm]
>  
> Damit sind links- und rechtsseitiger Grenzwert des
> Differenzenquotienten gleich und somit ist f in a
> diff'bar.
>  
> Ist das richtig?


ja



>  
> Grüße
>  Die_Suedkurve


Bezug
                                
Bezug
Differenzierbarkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mo 17.07.2017
Autor: Die_Suedkurve

Danke für deine Hilfe!

Grüße
Die_Suedkurve

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]