matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesDirekte Summe (offen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Direkte Summe (offen)
Direkte Summe (offen) < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Direkte Summe (offen): Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 01.06.2007
Autor: lala14

Hi!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

A, B sind zwei Teilmengen eines normierten Raumes E. A+B={a+b, a [mm] \in [/mm] A , b [mm] \in [/mm] B}.
Zu zeigen ist, dass wenn eine der beiden Menge A oder B offen, dann ist auch A+B offen.
Leider habe ich keine Ahnung wie ich das zeigen soll. Für offene Intervalle ist es logisch, aber wie zeige ich das allgemein?

        
Bezug
Direkte Summe (offen): Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Fr 01.06.2007
Autor: Gonozal_IX

Hiho,

naja, überlege dir mal was es heisst, daß eine Menge offen ist (hier oBdA A offen):

[mm]\forall{ x\in A } \exists{ \varepsilon > 0 }: {B_{\varepsilon}(x) \in A} [/mm] (also die Epsilon-Kugel um x)

Und nun sollst du zeigen, daß dann auch A+B offen ist. Überlege dir also, was du zeigen musst :-)

Bezug
                
Bezug
Direkte Summe (offen): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:53 Mi 08.08.2007
Autor: lala14

Das ist zwar logisch, aber ich verstehe es trotzdem nicht. Vorallem nicht wie ich das dann hinschreiben soll?

Bezug
                        
Bezug
Direkte Summe (offen): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Mi 08.08.2007
Autor: angela.h.b.

Hallo,

ich kann Deine Frage kaum verstehen.

> Das ist zwar logisch,

WAS findest Du logisch?

> aber ich verstehe es trotzdem nicht.

WAS verstehst Du nicht?

> Vorallem nicht wie ich das dann hinschreiben soll?

WAS willst Du hinschreiben?

Um etwas Konstruktives beizutragen:

Gonozal_IX hatte Dir ja gesagt, daß Du zunächst einmal aufschreiben sollst, was Du zeigen mußt.
Was hast Du denn zu zeigen, wenn Du zeigen willst, daß A+B offen ist?

Gruß v. Angela

Bezug
                                
Bezug
Direkte Summe (offen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 08.08.2007
Autor: lala14

Danke für die schnelle Antwort, aber hat noch jemand einen weiter Typ?

Bezug
                                        
Bezug
Direkte Summe (offen): Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 08.08.2007
Autor: Blech

A+B offen [mm]\gdw\ \forall x\in A\!+\!B \ \exists \,\varepsilon > 0 :\ B_{\varepsilon}(x) \in A\!+\!B [/mm]

Man beachte den Unterschied und die Gemeinsamkeiten zu oben.

Bezug
        
Bezug
Direkte Summe (offen): Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Do 09.08.2007
Autor: Somebody


> Hi!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> A, B sind zwei Teilmengen eines normierten Raumes E.
> [mm]A+B=\{a+b, a \in A , b \in B\}[/mm].
>  Zu zeigen ist, dass wenn eine der beiden Menge A oder B
> offen, dann ist auch A+B offen.
>  Leider habe ich keine Ahnung wie ich das zeigen soll. Für
> offene Intervalle ist es logisch, aber wie zeige ich das
> allgemein?

Zunächst bin ich der Meinung, dass Dein Diskussionsthema "Direkte Summe (offen)" irreführend ist: es ist nicht nötig, dass die Summe von $A$ und $B$ direkt ist.

Zum Beweis: es genügt zu zeigen, dass daraus, dass $A$ ist offen folgt, dass auch $A+B$ offen ist.
Sei also $A$ offen und [mm] $a+b\in [/mm] A+B$ beliebig, wobei [mm] $a\in [/mm] A$ und [mm] $b\in [/mm] B$. Zu zeigen: es gibt eine [mm] $\varepsilon$-Umgebung $\mathrm{B}_{\varepsilon}(a+b)$ [/mm] von $a+b$ mit [mm] $\mathrm{B}_{\varepsilon}(a+b) \subseteq [/mm] A+B$.
Da $A$ nach Voraussetzung offen ist, gibt es eine [mm] $\varepsilon$-Umgebung $\mathrm{B}_{\varepsilon}(a)$ [/mm] von $a$ mit [mm] $\mathrm{B}_{\varepsilon}(a) \subseteq [/mm] A$. Betrachte nun [mm] $\mathrm{B}_{\varepsilon}(a)+b$, [/mm] d.h. die um den Vektor $b$ verschobene Umgebung [mm] $\mathrm{B}_{\varepsilon}(a)$. [/mm]
Es ist jedenfalls [mm] $a+b\in \mathrm{B}_{\varepsilon}(a)+b$. [/mm] Nun muss man noch überlegen, ob [mm] $\mathrm{B}_{\varepsilon}(a)+b$ [/mm] sogar die gesuchte [mm] $\varepsilon$-Umgebung [/mm] von $a+b$ mit [mm] $\mathrm{B}_{\varepsilon}(a)+b\subseteq [/mm] A+B$ ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]