matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDiskrete Zufallsvektoren in Tabellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Diskrete Zufallsvektoren in Tabellen
Diskrete Zufallsvektoren in Tabellen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Zufallsvektoren in Tabellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 19.07.2004
Autor: Unsterblich

Hier mal eine typische Aufgabe aus unseren Klausuren:

Die Einzelwahrscheinlichkeiten [mm]p_i_j = P(X = x_i, Y = y_i)[/mm] eines diskreten Zufallsvektors, seien durch folgende Tabelle gegeben:

[mm]\begin{pmatrix} & x_1=1 & x_2=2 & x_3=3 \\ y_1=-1 & 0,25 & 0 & 0 \\ y_2=0 & 0,2 & 0,15 & 0,05 \\ y_3=1 & 0 & 0,15 & 0,2 \end{pmatrix} [/mm]

a) Man berechne P(X <= 2, Y = 0) und P(X > 1)
b) Sind X und Y unabhängig / unkorreliert
c) Man berechne P(Y = 0/X >=2) und E(Y/X >=2)

a) ist klar aber was muß man bei b) und c) anstellen?

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Diskrete Zufallsvektoren in Tabellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 19.07.2004
Autor: Brigitte

Hallo Unsterblich! ;-)

> [mm]\begin{pmatrix} & x_1=1 & x_2=2 & x_3=3 \\ y_1=-1 & 0,25 & 0 & 0 \\ y_2=0 & 0,2 & 0,15 & 0,05 \\ y_3=1 & 0 & 0,15 & 0,2 \end{pmatrix} [/mm]


> a) Man berechne P(X <= 2, Y = 0) und P(X > 1)
>  b) Sind X und Y unabhängig / unkorreliert
>  c) Man berechne P(Y = 0/X >=2) und E(Y/X >=2)
>  
> a) ist klar aber was muß man bei b) und c) anstellen?

zu b):
Unabhängig wären die beiden Zufallsvariablen, wenn

[mm] P(X = x_i, Y = y_j)=P( X = x_i)\cdot P(Y = y_j)[/mm]

für alle $i,j$ gelten würde. Bei dieser Aufgabe würde ich mal nach einem Gegenbeispiel suchen ;-)
Unkorreliertheit bedeutet, dass die Kovarianz von $X$ und $Y$ gleich 0 ist. Diese ist definiert durch

[mm] Cov(X,Y)=E(XY)-E(X)E(Y)[/mm]

Aus Unabhängigkeit folgt die Unkorreliertheit, aber im Allgemeinen nicht anders herum.

zu c)
Hier gehst Du am besten über die Definition der bedingten Wahrscheinlichkeit (so interpretiere ich Deinen Schrägstrich), also:

[mm]P(Y = 0|X \ge 2)= \frac{P(Y=0,X\ge 2)}{P(X\ge 2)} [/mm]

Das machst Du mit allen möglichen [mm] $y_j$, [/mm] um dann

[mm] E(Y|X \ge 2)=\sum\limits_j y_j\cdot P(Y=y_j|X\ge 2)[/mm]

auszurechnen. Probier's einfach mal. Wenn Du nicht weiterkommst, kannst Du Dich ja noch mal melden.

Gruß
Brigitte

Bezug
                
Bezug
Diskrete Zufallsvektoren in Tabellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:16 Di 20.07.2004
Autor: Unsterblich

Danke für Deine Hilfe! Hast mir damit sehr geholfen! Ist ja doch wesentlich einfacher, als ich das befürchtet habe! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]