matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDoppelsumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Doppelsumme
Doppelsumme < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Di 27.05.2008
Autor: silencio

Aufgabe
Berechne für alle [mm] n\in\IN: [/mm]
[mm] \summe_{i=1}^{n}\summe_{k=i}^{n}\bruch{i}{k} [/mm]

Wie berechne ich solch eine Doppelsumme?

        
Bezug
Doppelsumme: ausprobieren !
Status: (Antwort) fertig Status 
Datum: 21:18 Di 27.05.2008
Autor: Al-Chwarizmi


> Berechne für alle [mm]n\in\IN:[/mm]
>  [mm]\summe_{i=1}^{n}\summe_{k=i}^{n}\bruch{i}{k}[/mm]
>  Wie berechne ich solch eine Doppelsumme?

saluti  silencio,

zum Anfangen würde ich dir einmal empfehlen,
die gesamte Summation an konkreten Beispielen
(etwa mit n=5, n=10) von Hand (oder vielleicht
mit excel) durchzuführen. Das sollte dir gewisse
Ideen für den allgemeinen Fall bringen.

Gruß    al-Chwarizmi


Bezug
                
Bezug
Doppelsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 27.05.2008
Autor: silencio

ich versteh das prinzip dieser doppelsumme nicht wirklich. wenn unter dem zweiten summenzeichen k=i steht, dann ist doch  i/k immer =1.


Bezug
                        
Bezug
Doppelsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Di 27.05.2008
Autor: abakus


> ich versteh das prinzip dieser doppelsumme nicht wirklich.
> wenn unter dem zweiten summenzeichen k=i steht, dann ist
> doch  i/k immer =1.

Nein, das heißt nur, dass k nicht von 1 bis n, sondern nur von i bis n läuft.

Erster Durchlauf (i=1 in dem vorderen Summenzeichen)
Es wird hinten die Summe 1/1 +1/2+...+1/n gebildet.
Zweiter Durchlauf (i=2 in dem vorderen Summenzeichen)
Es werden nun noch 2/2+2/3+2/4+...2/n dazu addiert.
Dritter Durchlauf (i=3 in dem vorderen Summenzeichen)
Es werden nun noch 3/3+3/4+3/5+...3/n dazu addiert.
usw
Viele Grüße
Abakus


>  


Bezug
        
Bezug
Doppelsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 27.05.2008
Autor: konvex

na die summe besagt, dass [mm] \summe_{k=i}^{n} \bruch{i}{k} [/mm] = [mm] \bruch{i}{i} [/mm] + [mm] \bruch{i}{i+1} [/mm] + [mm] \bruch{i}{i+2} [/mm] + [mm] \ldots [/mm] + [mm] \bruch{i}{n-1} [/mm] + [mm] \bruch{i}{n} [/mm]

und dann nimmst du die 2.summe und summierst i auf, dh. zuerst setzte überall 1 ein, dann überall i=2 usw. bis zu i=n, dh. [mm] (1+\bruch{1}{2}+\bruch{1}{3}+ \ldots [/mm] + [mm] \bruch{1}{n-1} [/mm] + [mm] \bruch{1}{n}) [/mm] + [mm] (1+\bruch{2}{3}+\bruch{2}{4}+ \ldots [/mm] + [mm] \bruch{2}{n-2} [/mm] + [mm] \bruch{2}{n}) [/mm] + [mm] \ldots [/mm] + [mm] (1+\bruch{n}{n+1}+ \ldots [/mm] + [mm] \bruch{n}{n-1} +\bruch{n}{n}) [/mm]

ich hoffe dass hilft dir etwas weiter ;-)
Gruß

Bezug
        
Bezug
Doppelsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Di 27.05.2008
Autor: felixf

Hallo!

> Berechne für alle [mm]n\in\IN:[/mm]
>  [mm]\summe_{i=1}^{n}\summe_{k=i}^{n}\bruch{i}{k}[/mm]
>  Wie berechne ich solch eine Doppelsumme?

In dem du sie umordnest!

Ich schreib mal grob hin wie das aussieht (mit allgemeinen Koeffizienten [mm] $a_{ik}$ [/mm] anstelle [mm] $\frac{i}{k}$): [/mm]
[mm] $\sum_{i=1}^n \sum_{k=i}^n a_{ik} [/mm] = [mm] \sum_{\text{alle } i, k \text{ mit} \atop 1 \le i \le k \le n} a_{ik} [/mm] = [mm] \sum_{k=1}^n \sum_{i=1}^k a_{ik}$. [/mm]

So. Du kannst dir ja erstmal ueberlegen, warum da ueberall Gleichheit steht.

Wenn du das hast, kannst du dir die innere Summe [mm] $\sum_{i=1}^k \frac{i}{k} [/mm] = [mm] \frac{1}{k} \sum_{i=1}^k [/mm] i$ genauer angucken. (Stichwort: der kleine Gauss.) Und den geschlossenen Ausdruck, den du dafuer herausbekommst, in die aeussere Summe einsetzen. Du wirst sehen, es loest sich alles in wohlgefallen auf :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]