matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenDreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Dreieck
Dreieck < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:26 Do 13.09.2012
Autor: icelady

Aufgabe
Gegeben sei ein Dreieck mit den drei Punkten A := (0; 1; 0), B := (2; 2; 2) und C := (3; 1; 1)
Bestimmen Sie:
a.) Die Mittelpunkte der drei Seiten.
b.) Die drei Seitenhalbierenden in der Parameterform.
c.) Den Schnittpunkt der Seitenhalbierenden.

Hallo alle zusammen :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

a) hierfür hab ich erstmal die Seitenlängen ausgerechnet und dann für:
    MA: 1/2 * (3,3) = 1,65
    MB: 1/2 * (3,1) = 1,55
    MC: 1/2 * (2,2)= 1,1


b) SA: A + 1/2 * (MA - A) = 1,25
    SB: B + 1/2 * (MB - B)= 3,8
    SC: C + 1/2 * (MC - C)= 2,05

Jetzt frage ich mich, wie ich die Seitenhalbierende ohne die Mittelpunkte ausrechenn kann? Müsste das nicht dann so sein:
   SA: A + 1/2 * ( C - B)
   SB: B + 1/2 * ( C - A)
   SC: C + 1/2 * (B -A)
Nur da bekomme ich total den Mist raus!

c) S= 1/3(A+B+C)= 10

Und ich frage mich wie man jetzt bei dieser Aufgabe den Lotpunkt ausrechnen müsste?
ich dachte mir das so:
Zum Beispiel bestimme den Lotpunkt P von dem Punkt C auf der Geraden (AB)
       P=  <B - A; A + 1/2 * ( B - A) - C>=0
und analog für den Punkt B und den Punkt A:
      P= < C - A; A + 1/2 * ( C - A) - B = 0 für Punkt B
      P= < C - B; B + 1/2* (C - B) - A = 0



        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Do 13.09.2012
Autor: Diophant

Hallo,

das Fach heißt ja Analytische Geometrie. Das bedeutet ja nichts weniger als die Intention, geometrische Probleme durch Rechnung exakt zu lösen. Von daher verbieten sich schoneinmal jede Art von Näherungswerten in den Rechnungen.

Nun zu deiner Vorgehensweise: es ist in der Analytischen Geometrie so gut wie immer ungünstig, mit Streckenlängen zu rechnen (außer, dies ist ausdrücklich verlangt). Ihr müsst eine elementare Formel zur Bestimmung von Mittelpunkten gelernt haben; Stichwort: arithmetisches Mittel.

Bei b) geht es darum, Geradengleichungen aufzustellen (darauf weißt ja die Bezeichnung Parameterform eindeutig hin). Von daher ist deine Rechnung hier richtig angesetzt, aber die Ergebnisse in Form reeller Zahlen sind völlig sinnfrei.

Bei c) hast du zwar die richtige Formel angewandt, aber du hast sie missverstanden: den Schwerpunkt eines Dreiecks (und um den geht es hier, das hast du richtig gesehen) bekommt man mittels

[mm] \vec{s}=\bruch{1}{3}*(\vec{a}+\vec{b}+\vec{c}) [/mm]

wobei für [mm] \vec{a}, \vec{b} [/mm] und [mm] \vec{c} [/mm] die Ortsvektoren der Punkte A, B und C eingesetzt werden müssen (was du da eingesetzt hast, ist mit schleierhaft und ebenso, wo es hier um einen 'Lotpunkt' gehen soll (den man besser als Lotfußpunkt bezeichnet).


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]