matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikDurchnummerierung Permutatione
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Durchnummerierung Permutatione
Durchnummerierung Permutatione < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchnummerierung Permutatione: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:30 Sa 24.11.2012
Autor: Lu-

Aufgabe
Für verschiedene Zwecke benötigt nab eine Durchnummerierung aller Permutationen von[n], sodaß man [mm] \pi_k [/mm] sofort angeben kann, ohne vorher die anderen Permutationen zu konstruieren.
Eine Möglichkeiet der Durchnummerierung besteht im Anzählen der Insersionen: Sei $ [mm] \pi [/mm] $ eine Permutation von [n]. Sei  [mm] \pi [/mm]  eine Permutation von [n]. Sei  [mm] a_i [/mm]  die Anzahl der Inversionen (k,l) mit  [mm] \pi(l)=n-i [/mm]  für i=1,2,..,n-1
Zum Bsp ist für n =7,  [mm] \pi [/mm]  = 5  3 7 2 1 6 4 die entsprechende Folge durch
[mm] (a_1,a_2,..,a_6) [/mm] = (1,0,3,1,3,4)  gegeben.

ZEIGE: Es gilt 0 [mm] \le a_i \le [/mm] i , i=1,2,..,n-1
Jede Folge, kurz Inversionsfolge genannt defeniert eine eindeutig bestimmte Permutation . Man kann also jeder Zahl k mit 0 [mm] \le [/mm] k [mm] \le [/mm] n! -1 eine eindeutig bestimmte [mm] Permuttaion\pi [/mm] zuordnen: Schreibe einfach k in der Gestalt
k= [mm] a_1 [/mm] *1! + [mm] a_1 [/mm] * 2! +..+ [mm] a_{n-1} [/mm] * (n-1)!
und interpretiere [mm] (a_1,.., a_{n-1}) [/mm] als Inversionsfolge.
Finde eine möglichst einfache Methode, um aus der Inversionsfolge die Permutationen [mm] \pi [/mm] zu konstruieren.

Hei
Also
Sei a= [mm] (a_1,.., a_{n-1} [/mm] )Inversionsfolge einer Permutation [mm] \pi\in S_n [/mm] , [mm] \pi= (\pi_1 [/mm] ,.., [mm] \pi_{n-1} [/mm] , [mm] \pi_n [/mm] ) defeniert durch:
[mm] a_i [/mm] =| [mm] \{ (k,l) | k < l und \pi_k > \pi_l = n -i \} [/mm]
für i=1,..,n-1
Ich glaub ich verstehe das ganze nicht wirklich.






        
Bezug
Durchnummerierung Permutatione: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 26.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]