matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesE-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - E-Funktion
E-Funktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:06 Fr 06.02.2015
Autor: strawberryjaim

Aufgabe
[mm] e^{\wurzel{x}} e^{x+1} [/mm] = 1

Bestimmen Sie den maximalen Definitionsbereich, sowie die Lösungsmenge.

Reicht es, für den Definitionsbereich, dass D = [mm] \IR, [/mm] da eine Exponentialfunktion dort stetig ist?

Lösungsmenge, wie soll ich da vorgehen?

Danke schon mal :)

        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Fr 06.02.2015
Autor: DieAcht

Hallo strawberryjaim!


> [mm]e^{\wurzel{x}} e^{x+1}[/mm] = 1
>
> Bestimmen Sie den maximalen Definitionsbereich, sowie die
> Lösungsmenge.
> Reicht es, für den Definitionsbereich, dass D = [mm]\IR,[/mm] da
> eine Exponentialfunktion dort stetig ist?

Was hat denn die Stetigkeit damit zu tun? Für den Definitions-
bereich solltest du auf die Wurzel achten!

> Lösungsmenge, wie soll ich da vorgehen?

Tipp:

      [mm] \exp(a)*\exp(b)=\exp(a+b). [/mm]


Gruß
DieAcht

Bezug
                
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Fr 06.02.2015
Autor: strawberryjaim

Dann hätte ich aber ja [mm] e^{x^{\bruch{3}{2}}+1} [/mm] = 1? :)

Bezug
                        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Fr 06.02.2015
Autor: DieAcht


> Dann hätte ich aber ja [mm]e^{x^{\bruch{3}{2}}+1}[/mm] = 1? :)

Nein. Es gilt:

      [mm] e^{\sqrt{x}}*e^{x+1}=e^{\sqrt{x}+x+1}\overset{!}{=}1. [/mm]

Kann das funktionieren?

(Falls du rechnen willst, dann benutze auf beiden Seiten den [mm] \ln.) [/mm]

Bezug
                                
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 06.02.2015
Autor: strawberryjaim

Danke schon mal für den Tipp mit dem ln, aber kann man die Gleichung auch anders lösen? Oder muss ich wirklich [mm] \wurzel{x}+1+x [/mm] = 0 rechnen?

Bezug
                                        
Bezug
E-Funktion: keine sinnvollen Alternativen
Status: (Antwort) fertig Status 
Datum: 16:32 Fr 06.02.2015
Autor: Roadrunner

Hallo!


> Danke schon mal für den Tipp mit dem ln, aber kann man die
> Gleichung auch anders lösen? Oder muss ich wirklich
> [mm]\wurzel{x}+1+x[/mm] = 0 rechnen?  

Ich sehe hier keinen anderen (sinnvollen) Weg.


Gruß vom
Roadrunner

Bezug
                                                
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Fr 06.02.2015
Autor: strawberryjaim

Und wie löse ich das? Ich hab so die arge Befürchtung, dass das mittels binomischer Formeln gehen soll..

Bezug
                                                        
Bezug
E-Funktion: quadratische Gleichung
Status: (Antwort) fertig Status 
Datum: 16:40 Fr 06.02.2015
Autor: Roadrunner

Hallo!


Nein, binomische Formel benötigst Du hier nicht.

Es gilt ja, folgende Gleichung zu lösen:

[mm] $x+\wurzel{x}+1 [/mm] \ = \ 0$


Mit der Substitution $u \ := \ [mm] \wurzel{x}$ [/mm] ergibt sich daraus folgende quadratische Gleichung:

[mm] $u^2+u+1 [/mm] \ = \ 0$


Gruß vom
Roadrunner

Bezug
                                                                
Bezug
E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Fr 06.02.2015
Autor: strawberryjaim

Vielen vielen Dank! :)

Bezug
                                        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Fr 06.02.2015
Autor: DieAcht


> Oder muss ich wirklich [mm]\wurzel{x}+1+x[/mm] = 0 rechnen?  

Eine Begründung reicht. Es gilt:

      [mm] $\sqrt{x}+1+x\ge [/mm] 1$ für alle(!) [mm] x\in[0,\infty). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]