matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEbene E durch 3Punkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ebene E durch 3Punkte
Ebene E durch 3Punkte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene E durch 3Punkte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:25 Do 02.02.2006
Autor: SonyS

Aufgabe
Die drei Eckpunkte A(-2, 1, 1), B(4,4,-5) und C(2,0,3) einer Dreiecks sind im kartesischen Koordinaten gegeben. Gesucht ist:
die Gleichung der Ebene E durch die 3 Punkte A, B, C?

Hallo,

ich habe der folgende Rechenweg versucht:

E:  [mm] \vektor{x \\ y\\ z} [/mm] = [mm] \vektor{-6 \\ -3\\ 6} [/mm] + [mm] \lambda \vektor{-10 \\ -2\\ 8} [/mm] +  [mm] \mu \vektor{-8 \\ -7\\ 2} [/mm]

Soweit ist alles gut, aber jetzt weiss ich nicht wie ich diese Lambda und Mu eliminieren kann, damit ich zu E: 2y + z - 3 = 0 komme. Kann mir vielleicht jemand kurz erklaeren wie das geht. Ich habe ein Paar Erklaerungen im Internet gefunden, aber ich komme nicht ganz klar mit den... Ich bin dankbar wirklich fuer jeder Antwort.

Viellen Dank im Vorraus.

        
Bezug
Ebene E durch 3Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 02.02.2006
Autor: banachella

Hallo!

Um diese Aufgabe zu lösen gibt es mehrere Wege:

1. Die Gleichung $ [mm] E\colon [/mm] 2y + z - 3 = 0$ bedeutet ja gerade, dass das Skalarproukt eines Punktes [mm] $\vektor{x\\y\\z}$ [/mm] der Ebene mit [mm] $\vektor{0\\2\\1}$ [/mm] gleich $3$ sein muss. Wie kommst du dorthin?
Zunächst solltest du die Ebenengleichung mit [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] aufstellen. Mir scheint, dass du dich dabei verrechnet hast. Benutze $A$ als Aufpunkt:
[mm] $E\colon \vektor{-2\\1\\1}+\lambda\vektor{6\\3\\-6}+\mu\vektor{4\\-1\\2}$. [/mm]
Jetzt bilde das Kreuzprodukt von [mm] $\vektor{6\\3\\-6}$ [/mm] und [mm] $\vektor{4\\-1\\2}$: [/mm]
[mm] $\vektor{6\\3\\-6}\times \vektor{4\\-1\\2}=\vektor{6-(-6)\\-24-12\\-6-12}=\vektor{0\\-36\\-18}=-18*\vektor{0\\2\\1}$. [/mm]
Nun bilde das Skalarprodukt des Aufvektors mit [mm] $\vektor{0\\2\\1}$: [/mm]
[mm] $(-2,1,1)\vektor{0\\2\\1}=2+1=3$. [/mm]
Insgesamt ergibt das [mm] $E\colon [/mm] 2y+z-3=0$.

2. Für einen Punkt der Ebene gilt:
[mm] $\vektor{x\\y\\z}=\vektor{-2\\1\\1}+\lambda\vektor{6\\3\\-6}+\mu\vektor{4\\-1\\2}$. [/mm]
Betrachte nun die einzelnen Zeilen als Gleichungen:
[mm] $x=-2+6*\lambda +4*\mu$ [/mm]
[mm] $y=1+3*\lambda-\mu$ [/mm]
[mm] $z=1-6*\lambda+2*\mu$ [/mm]
Löse dieses Gleichungssystem nach [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] auf. Dann bleibt nur noch eine Gleichung übrig, in der du [mm] $\lambda$ [/mm] und [mm] $\mu$ [/mm] eliminiert hast - deine Ebenennormalform.

Gruß, banachella

Bezug
                
Bezug
Ebene E durch 3Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Do 02.02.2006
Autor: SonyS

Vielen Dank fuer dein Antwort. Ich habe mich nicht nur verrechnet, sondern total verwirrt.... Danke, du hast mich sehr geholfen...:):):)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]