matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenEbenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Ebenen
Ebenen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 18.09.2007
Autor: headbanger

Aufgabe
Gegeben ist die Ebene E: [mm] 3x_{1} [/mm] + [mm] 4x_{2} [/mm] + [mm] 6x_{3}=0 [/mm]

a) Begründen sie: Die Spurgeraden gehen alle durch den Ursprung


WIe kann ich das begründen???????

        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 18.09.2007
Autor: Event_Horizon

Hallo!

Spurgraden erhält man doch, indem man jeweils eine KOmponente =0 setzt, und den Rest als Gradengleichung in der jeweiligen Koordinatengleichtung interpretiert. Setze [mm] x_3=0, [/mm] und du bekommst eine Grade, die du in [mm] x_2=mx_1+b [/mm] umformen kannst.

Dabei kommt raus, das in allen drei Fällen b=0 gilt, das heißt, das sind alles Ursprungsgraden.


Alternativ: die Konstante in der Ebenengleichung ist ein Maß für ihren Abstand zum Ursprung. Da deine Ebene keine Konstante hat (bzw diese =0 ist), ist das eine Ursprungsgrade, letztendlich erfüllen auch [mm] x_1=x_2=x_3=0 [/mm] die Gleichung. Und damit ist das mit den Spurgraden eh klar.

Bezug
        
Bezug
Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 18.09.2007
Autor: crashby

Hey,

BIn noch neu hier und habe mich noch nicht ganz reingefuchst aber vielleicht hilft dir das noch weiter.

Wenn die Ebene durch den Koordinatenursprung verläuft, so fallen die Spurpunkte hier zusammen, zugleich schneiden sich hier alle drei Spurgeraden. Ansonsten schneiden sich jeweils nur zwei der Spurgeraden, und zwar genau in den Spurpunkten.

Den Rest hat mein Vorgänger schon gut beschrieben

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]