matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichung bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Ebenengleichung bestimmen
Ebenengleichung bestimmen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Mo 30.10.2006
Autor: JR87

Aufgabe
Pyramidengrundfläche
A(0;0;0)
B(2;0;0)
C(2;2;0)
D(0;2;0)

Pyramidenspitze:
E(1;1;2)

Ich muss jetzt für die Grundfläche der Pyramide eine Ebenengleichung aufstellen. Kann ich es dorf so machen, dass ich 3 Punkte (A,B,C) nehme und daraus eine Parametergleichung mache?

Also so:
[mm] \varepsilon; \vektor{0 \\ 0 \\ 0} [/mm] + [mm] s\vektor{2 \\ 0 \\ 0} [/mm] + [mm] t\vektor{2 \\ 2 \\ 0} [/mm]

        
Bezug
Ebenengleichung bestimmen: alles ok
Status: (Antwort) fertig Status 
Datum: 11:10 Mo 30.10.2006
Autor: informix

Hallo JR87,
> Pyramidengrundfläche
>  A(0;0;0)
>  B(2;0;0)
>  C(2;2;0)
>  D(0;2;0)
>  
> Pyramidenspitze:
>  E(1;1;2)
>  Ich muss jetzt für die Grundfläche der Pyramide eine
> Ebenengleichung aufstellen. Kann ich es dorf so machen,
> dass ich 3 Punkte (A,B,C) nehme und daraus eine
> Parametergleichung mache?
>  
> Also so:
>  [mm]\varepsilon= \vektor{0 \\ 0 \\ 0}+s\vektor{2 \\ 0 \\ 0}+t\vektor{2 \\ 2 \\ 0}[/mm]  

[ok]

Du benötigst Richtungsvektoren, keine Ortsvektoren, um die Ebene zu beschreiben.
allgemein: [mm] $\vec{x}=\vec{a}+r*(\vec{b}-\vec{a})+s*(\vec{c}-\vec{a})$ [/mm]
Diesmal fallen die Richtungsvektoren wegen A(0;0;0) mit den Ortsvektoren zusammen, i.a. aber nicht!

alles ok.

Gruß informix


Bezug
                
Bezug
Ebenengleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Mo 30.10.2006
Autor: JR87

ich danke dir

Bezug
        
Bezug
Ebenengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mo 30.10.2006
Autor: JR87

Gut beim richtigen Lesen der Aufgabe hat sich noch ine Frage ergeben. Also ich muss den Schnittwinkel zwischen der Ebene [mm] \varepsilon [/mm] und jeweils [mm] \overrightarrow{AE}, \overrightarrow{BE}, \overrightarrow{CE} [/mm] & [mm] \overrightarrow{DE} [/mm] feststellen. Also eine Parametergleichung kann ich aus allen Vektoren machen. Wir haben es aber so gelernt das die Gerade in Parameterform und die Ebene in Koordinatenform vorliegen muss. Jetzt habe ich die Ebene aber in Parameterform gegeben und mir ist es irgendwie nicht möglich diese in Koordinatenform umzuwandeln, da da so viele Nullen enthalten sind und ich somit die Parameter nicht eleminieren kann

Bezug
                
Bezug
Ebenengleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 30.10.2006
Autor: max3000

Was ist da das Problem die Ebenengleichung in Koordinatenform umzuwandeln?

Du hast du Gleichung:

ax+by+cz=d

Da du 4 Punkte gegeben hast musst du einfach nur ein Lineareas Gleichungssystem daraus machen. Dafür nimmst du für x,y und z deine gegebenen Punkte und kannst daraus eine Matrix erstellen, die du in den GTR eingibst. (Weiß ja nicht welchen Rechner ihr verwendet aber bei den Casio-Teilen ist das im EQUA-Menü Solv Unknows: 4)

Das ausrechnen bekommst du denk ich mal alleine hin.

Kannst auch a, b, c und d Schritt für Schritt ausrechnen. z.B. erkennst du schonmal aus dem Punkt a, dass d=0 sein muss. Und so weiter...

Grüße Max

Bezug
                        
Bezug
Ebenengleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Mo 30.10.2006
Autor: JR87

Mit Matrix kann ich nix anfange ( außer dem Film ;)) . Ich könnte aus der Parametergleichung ein lin. Gleichungssystem machen, aber da da viele Nullen enthalten sind, ist das eleminieren etwas kompliziert.

Bezug
                                
Bezug
Ebenengleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 30.10.2006
Autor: informix


> Mit Matrix kann ich nix anfange ( außer dem Film ;)) . Ich
> könnte aus der Parametergleichung ein lin. Gleichungssystem
> machen, aber da da viele Nullen enthalten sind, ist das
> eleminieren etwas kompliziert.

Denk dran, die Ebene liegt ihrerseits in der 1-2-Ebene des Koordinatensystems: [mm] x_3=0 [/mm] !
Daher ist ihr Normalenvektor [mm] \vektor{0\\0\\1}. [/mm]
Jetzt noch einen Punkt, z.B. C, hernehmen und die MBNormalenform der Ebene aufstellen; daraus ergibt sich dann auch die Koordinatenform.

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]