matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenenspiegelung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Ebenenspiegelung
Ebenenspiegelung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenspiegelung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:35 Fr 09.11.2007
Autor: daniel89

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


"Gegeben sind die Gerade g: [mm] \vec{x}=\vektor{6 \\ 1 \\ 8} [/mm] + [mm] t\vektor{1 \\ 0\\3} [/mm] und die Ebene E: [mm] -x_{1}+3x_{2}-2x_{3} [/mm] =2.

a) Best. Sie den Schnittpunkt S der Geraden g mit der Ebene E.
b) Wählen Sie beliebig einen Punkt P [mm] (\not=S) [/mm] auf g. P wird an der Ebene E gespiegelt. Bestimmen Sie den Bildpunkt P' (vgl. hier zu das Bild)
c) Best. Sie eine Gleichung der Bildgeraden g' bei Spiegelung von g an E (s. Bild)"

[Dateianhang nicht öffentlich]

Hallo liebe Matheraum-Mitglieder,

ich bin durch Zufall auf diese Seite gestoßen und hoffe nun, dass Ihr mir bei der oben stehenden Aufgabe behilflich sein könnt :-).
Irgendwie hab ich da überhaupt keinen Ansatzpunkt, LEIDER. :-( ... Vielleicht endert sich das ja mit Eurer Hilfe. ;-)

Weiteres Problem: Wir schreiben Ende des Monats über Ebenen, Geraden, Vektoren usw. unsere Klausur. Aufgrund dessen möchte ich mich dieses Wochenende intensiv mit dem Thema befassen, da ich - wie man an dieser Aufgabe sieht - noch so meine Probleme habe.

Also ich zähl' auf Eure Unterstützung.
Danke im Voraus!



Mit freundlichem Gruß

Daniel

PS: Wäre über Tipps, Lösungsansätze, Lösungsskizzen usw. bzgl. der Aufgabe Euch echt vom Herzen dankbar und ich wünsche schonmal an dieser Stelle ein angenehmes Wochenende.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Ebenenspiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Sa 10.11.2007
Autor: Zwerglein

Hi, Daniel,

> "Gegeben sind die Gerade g: [mm]\vec{x}=\vektor{6 \\ 1 \\ 8}[/mm] +  [mm]t\vektor{1 \\ 0\\3}[/mm] und die Ebene E: [mm]-x_{1}+3x_{2}-2x_{3}[/mm] =2.
>  
> a) Best. Sie den Schnittpunkt S der Geraden g mit der Ebene  E.

Aber wie das geht, weißt Du schon, oder?
(g in E einsetzen, ...)

>  b) Wählen Sie beliebig einen Punkt P [mm](\not=S)[/mm] auf g. P
> wird an der Ebene E gespiegelt. Bestimmen Sie den Bildpunkt
> P' (vgl. hier zu das Bild)

Wenn bei a) nicht dummerweise der Aufpunkt der Geraden rauskommt, nimmst Du diesen als Punkt P. Dann erstellst Du eine Gleichung der Lotgeraden der Ebene durch diesen Punkt (Richtungsvektor dieser Geraden = Normalenvektor der Ebene) und schneidest diese Lotgerade mit der Ebene.
Dann kriegst Du den Lotfußpunkt L.
Mit Hilfe der Vektorgleichung [mm] \vec{p'} [/mm] = [mm] \vec{l} [/mm] + [mm] \overrightarrow{PL} [/mm]
kannst Du dann den Punkt P' berechnen

>  c) Best. Sie eine Gleichung der Bildgeraden g' bei
> Spiegelung von g an E (s. Bild)"

Diese Gerade g' ist die Gerade durch die Punkte S und P'.

So: Und nun probier' das mal!

Falls noch Fragen sind, ...

> Weiteres Problem: Wir schreiben Ende des Monats über
> Ebenen, Geraden, Vektoren usw. unsere Klausur. Aufgrund
> dessen möchte ich mich dieses Wochenende intensiv mit dem
> Thema befassen, da ich - wie man an dieser Aufgabe sieht -
> noch so meine Probleme habe.

Da musst Du schon genauer sagen, was ihr im Unterricht bisher so gemacht habt!

Vielleicht schaust Du schon mal hier: https://matheraum.de/wissen/AnalytischeGeometrie

Weitere Tipps ggf. später!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]