matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenraum bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenraum bestimmen
Eigenraum bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Sa 30.04.2011
Autor: dreamweaver

Aufgabe
Bestimme die Basen des Eigenraumes der Matrix [mm] \pmat{ i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i } [/mm] für den Eigenwert [mm] $\lambda [/mm] = i$

$i$ ist eine doppelte Nullstelle.

Charakteristisches Polynom: [mm] $(i-\lambda)^{2}(1-\lambda) [/mm] = 0$

Gut ich habs mal so aufgeschrieben:

[mm] $\pmat{ 0 & 0 & 0 \\ 0 & 1-i & 0 \\ 0 & 0 & 0 }\vec{v} [/mm] = 0$

[mm] (1-i)v_{2} [/mm] = 0 [mm] \rightarrow v_{2} [/mm] = 0
[mm] v_{1}, v_{2} \in \IC [/mm]

Der Eigenvektor ist dann [mm] \vec{v} [/mm] = [mm] (1,0,1)^{T}. [/mm]

Der Eigenraum hat dann doch die Basis [mm] L\{(1,0,1)^{T}\} [/mm] oder?

Ist das richtig so?

Lg

        
Bezug
Eigenraum bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Sa 30.04.2011
Autor: schachuzipus

Hallo dreamweaver,


> Bestimme die Basen des Eigenraumes der Matrix [mm]\pmat{ i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i }[/mm]
> für den Eigenwert [mm]\lambda = i[/mm]
>  
> [mm]i[/mm] ist eine doppelte Nullstelle.
>  
> Charakteristisches Polynom: [mm](i-\lambda)^{2}(1-\lambda) = 0[/mm]

Du meinst [mm]p(\lambda)=(i-\lambda)^2(1-\lambda)[/mm]


>  
> Gut ich habs mal so aufgeschrieben:
>  
> [mm]\pmat{ 0 & 0 & 0 \\ 0 & 1-i & 0 \\ 0 & 0 & 0 }\vec{v} = 0[/mm]
>  
> [mm](1-i)v_{2}[/mm] = 0 [mm]\rightarrow v_{2}[/mm] = 0 [ok]
>  [mm]v_{1}, v_{2} \in \IC[/mm] [ok]
>  
> Der Eigenvektor ist dann [mm]\vec{v}[/mm] = [mm](1,0,1)^{T}.[/mm]
>  
> Der Eigenraum hat dann doch die Basis [mm]L\{(1,0,1)^{T}\}[/mm]
> oder?

Nee, du hast mit den Zeilen 1 und 3 doch [mm]v_1=s[/mm] mit [mm]s\in\IC[/mm] und [mm]v_3=t[/mm] mit [mm]t\in\IC[/mm]

Damit hat ein Eigenvektor die Gestalt [mm]\vektor{s\\ 0\\ t}[/mm] mit [mm]s,t\in\IC\setminus\{0\}[/mm]

[mm]=s\vektor{1\\ 0\\ 0}+t\vektor{0\\ 0\\ 1}[/mm]

Du hast etwa mit [mm]s=t=1[/mm] also 2 linear unabh. Eigenvektoren [mm]\vektor{1\\ 0\\ 0},\vektor{0\\ 0\\ 1}[/mm] zum Eigenwert [mm]\lambda=i[/mm]

Der Eigenraum ist also [mm]L\{(1,0,0)^T,(0,0,1)^T\}[/mm] - schön 2-dimensional!

>  
> Ist das richtig so?
>  
> Lg

Gruß

schachuzipus


Bezug
                
Bezug
Eigenraum bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Sa 30.04.2011
Autor: dreamweaver

Danke schachuzipus!
Jetzt ists mir klar!

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]