matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor
Eigenvektor < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 01.07.2008
Autor: CH22

Aufgabe
[mm] A=\pmat{ 1 & -1 \\ -1 & 2 } [/mm]

Hi also ich habe die Eigenwerte zu der obigen Matrix berechnet und zwar [mm] \lambda_{1,2} [/mm] = [mm] \bruch{3\pm \wurzel{5}}{2} [/mm] .
Wenn ich die Eigenvektore berechen will muss ich ja [mm] (\lambda_{1,2} [/mm] E- A) x =0 berechnen.
Da kommt dann bei mir folgendes Gleichungssystem heraus:
(für [mm] \lambda_1) [/mm]

[mm] (\bruch{3+\wurzel{5}}{2}-1) x_1-x_2=0 [/mm]
[mm] -x_1+(\bruch{3+\wurzel{5}}{2}-2)x_2=0 [/mm]

Ab da komme ich irgendwie nicht mehr weiter, könnte mir vielleicht jemand helfen?

Vielen Dank und liebe Grüße

        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Di 01.07.2008
Autor: mathwizard

Hallo CH22

die [mm] $\lambda_1,\lambda_2$ [/mm] wurden ja so gewählt, damit [mm] (\lambda [/mm] E - A) singulär wird. Somit hat es keine eindeutige Lösung [mm] $(x_1,x_2)$. [/mm]
Deine beiden Gleichungen zuunterst sind also äquivalent: Multipliziere die obere mit [mm] $-(\bruch{3+\wurzel{5}}{2}-2)$ [/mm] und du erhälst die untere.

[mm] $x_1$ [/mm] ist somit beliebig (z.B. [mm] \alpha), [/mm] und du erhälst die Lösungen:
[mm] $(x_1,x_2)=$(\alpha,\alpha(\bruch{3+\wurzel{5}}{2}-1))$ [/mm]

meistens normiert man das ganze noch, und wählt [mm] $\alpha$ [/mm] entsprechend.

Hoffe ich konnte dir helfen,
Gruss mathwizard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]