matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte, Eigenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte, Eigenraum
Eigenwerte, Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte, Eigenraum: Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:31 So 27.03.2011
Autor: Kayle

Hallo,

in Vorbereitung auf meine mündliche Prüfung habe ich mir überlegt, was mir für Fragen gestellt werden könnten.

Und da Eigenwerte, etc. zu den Schwerpunkten der lin. Alg. gehören, viel mir auf, warum sucht man eigentlich Eigenräume?
Ich weiß, wie man sie berechnet, indem man zuerst charakt. Polynom bestimmt, die Eigenwerte berechnet, danach die dazu gehörigen Eigenvektoren und somit den Eigenraum.

Also, warum macht man das?
Ich würde ja ungefähr so antworten: Ich möchte halt eine möglichste einfache Darstellung der gegebene Matrix, und da der Eigenraum aus Eigenvektoren besteht, versuche ich immer die Matrix in diesen zu überführen.

Wäre dankbar über Antworten, ich suche hier keine Definition, sondern einfach nur eine gute Antwort auf das "warum".

Viele Grüße
Kayle

        
Bezug
Eigenwerte, Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 27.03.2011
Autor: felixf

Moin,

> Und da Eigenwerte, etc. zu den Schwerpunkten der lin. Alg.
> gehören, viel mir auf, warum sucht man eigentlich
> Eigenräume?

weil sie Eigenvektoren enthaelten ;-)

> Also, warum macht man das?
>  Ich würde ja ungefähr so antworten: Ich möchte halt
> eine möglichste einfache Darstellung der gegebene Matrix,
> und da der Eigenraum aus Eigenvektoren besteht, versuche
> ich immer die Matrix in diesen zu überführen.

Das ist ein Grund. Weiterhin haben Eigenvektoren/-raeume oft auch Bedeutungen in der Praxis, etwa bei bestimmten physikalischen Matrizen (Hauptspannungsvektoren bei Spannungstensoren etc.).

Ansonsten schau doch mal in den []englischen Wikipedia-Artikel zum Thema. Dort finden sich in der Einleitung, bei History und schliesslich bei Applications viele Hinweise, warum man an Eigenwerten interessiert ist. Ein "Internet-Beispiel" ist etwa google: google basiert auf dem []PageRank-System, und den PageRank kann man als Eigenvektor zum betragsgroessten Eigenwert einer rieeeesigen Matrix ansehen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]