matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEinheitengruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Einheitengruppe
Einheitengruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Fr 05.02.2010
Autor: one

Aufgabe
Bestimme die Gruppe [mm] (\IZ/16\IZ)* [/mm]

Es handlet sich hierbei also um die Einheitengruppe.
Die Gruppe hat [mm] \varphi(16) [/mm] Elemente. Das sind also 8 Elemente.
Durch mühsames ausprobieren habe ich schliesslich folgende Elemente herausgefunden:

[mm] {\pm 1, \pm 3, \pm 5, \pm 7}. [/mm]

Das sollte eigentlich simmen.
Meine Frage ist nun aber, ob es hierfür irgend ein Rezpet gibt, wie die Einheitengruppe bestimmt werden kann, oder muss jeweils einfach durchprobiert werden?

        
Bezug
Einheitengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Fr 05.02.2010
Autor: angela.h.b.


> Bestimme die Gruppe [mm](\IZ/16\IZ)*[/mm]
>  Es handlet sich hierbei also um die Einheitengruppe.
>  Die Gruppe hat [mm]\varphi(16)[/mm] Elemente. Das sind also 8
> Elemente.
>  Durch mühsames ausprobieren habe ich schliesslich
> folgende Elemente herausgefunden:
>  
> [mm]{\pm 1, \pm 3, \pm 5, \pm 7}.[/mm]
>  
> Das sollte eigentlich simmen.
>  Meine Frage ist nun aber, ob es hierfür irgend ein Rezpet
> gibt, wie die Einheitengruppe bestimmt werden kann, oder
> muss jeweils einfach durchprobiert werden?

Hallo,

es gibt schon ein "Rezept".

Ich gebe Dir mal einen Hinweis: denke über gemeinsame Teiler nach.

Gruß v. Angela


Bezug
                
Bezug
Einheitengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 05.02.2010
Autor: one

Aja, die Einheitengruppe von n entspricht ja genau den Zahlen a [mm] \le [/mm] n, mit ggT(a,n) = 1.
Also muss ich einfach diese Zahlen finden.
Hast du dieses "Rezept" gemeint? :-)

Bezug
                        
Bezug
Einheitengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Fr 05.02.2010
Autor: felixf

Hallo!

> Aja, die Einheitengruppe von n entspricht ja genau den
> Zahlen a [mm]\le[/mm] n, mit ggT(a,n) = 1.
>  Also muss ich einfach diese Zahlen finden.
>  Hast du dieses "Rezept" gemeint? :-)

Genau.

Falls du weisst, dass $n$ die Primfaktoren [mm] $p_1, \dots, p_t$ [/mm] hat, dann suchst du also alle Zahlen zwischen 1 und $n - 1$, welche durch keine der [mm] $p_i$ [/mm] teilbar sind.

In deinem Fall hast du nur den Primfaktor [mm] $p_1 [/mm] = 2$, womit du alle Zahlen zwischen 1 und 15 suchst die nicht durch 2 teilbar sind. Die aufzuschreiben geht schnell ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]