matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungElastizität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Elastizität
Elastizität < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elastizität: Idee bzw. Lösung
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 06.07.2009
Autor: Floorfilla1984

Aufgabe
Ermitteln Sie die Elastizität folgender Funktionen:
a) f(x)= [mm] 2*e^x/2 [/mm]
b)g(x)= [mm] 3*\wurzel{x} [/mm]
c) f(x)/g(x)

Bekomme es leider nicht hin, vielleicht kann mir jemand helfen ?!
Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Elastizität: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 06.07.2009
Autor: angela.h.b.


> Ermitteln Sie die Elastizität folgender Funktionen:
>  a) f(x)= [mm]2*e^x/2[/mm]
>  b)g(x)= [mm]3*\wurzel{x}[/mm]
>  c) f(x)/g(x)
>  Bekomme es leider nicht hin, vielleicht kann mir jemand
> helfen ?!

Hallo,

schreib doch erstmal hin, wie "Elastizität" überhaupt definiert ist.

das ist ja die Grundlage fürs weitere Tun.

Gruß v. Angela


>  Danke.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Elastizität: Formel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:28 Di 07.07.2009
Autor: Floorfilla1984

Die Elastizität ist folgendermaßen definiert:

Ef= x*f'(x)/f(x)

Bezug
        
Bezug
Elastizität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Di 07.07.2009
Autor: Al-Chwarizmi


> Ermitteln Sie die Elastizität folgender Funktionen:

>  a) f(x)= [mm]2*e^x/2[/mm]
>  b)g(x)= [mm]3*\wurzel{x}[/mm]
>  c) f(x)/g(x)


Hallo

nach der Formel   $\ E(f)=x*f'(x)/f(x)$

brauchst du ja im wesentlichen nur die
Ableitungen und etwas Algebra.

Schreib doch einmal die Ableitungen

      $\ f'(x)$ , $\ g'(x)$  und  [mm] $\left(\bruch{f(x)}{g(x)}\right)'$ [/mm]  auf

und setze dann in die Formel ein.

Mit den Funktionen f ung g in (c) sind
wohl die aus (a) und (b) gemeint.


LG   Al-Chwarizmi

Bezug
                
Bezug
Elastizität: FWD
Status: (Frage) beantwortet Status 
Datum: 09:10 Di 07.07.2009
Autor: Floorfilla1984

Ja genau, sind sie.
Also bei a) steht bei mir zum Schluss: 1/2*x, wenn ich jeweils den Term [mm] 2*e^x/2 [/mm] rauskürze.
und bei b) hatte ich auch zum Schluss 1/2*x raus, weiß allerdings nicht, ob ich richtig umgestellt habe.
Bei c) sagt eine Formal: Der Quotient zweier "Einzel"-Elastizitäten ist definiert als E(h) = E(f)-E(g) und bei mir kommt demnach 0 heraus.. Stimmt das so ?!


Bezug
                        
Bezug
Elastizität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Di 07.07.2009
Autor: angela.h.b.


>  Also bei a) steht bei mir zum Schluss:

Hallo,

es ist alles viel einfacher zu verfolgen, wenn Du Zwischenergebnisse mit angibst, hier also Deine Ableitungen.
So kann man mit etwas Glück leicht sehen, wo etwaige Fehler liegen - und man raucht keinen Stift in die hand zu nehmen.

> 1/2*x, wenn ich

Richtig.

> jeweils den Term [mm]2*e^x/2[/mm] rauskürze.
>  und bei b) hatte ich auch zum Schluss 1/2*x raus, weiß
> allerdings nicht, ob ich richtig umgestellt habe.

Hier scheint etwas schiefgegangen zu sein, und folglich stimmt c) dann auch nicht.

Gruß v. Angela



>  Bei c) sagt eine Formal: Der Quotient zweier
> "Einzel"-Elastizitäten ist definiert als E(h) = E(f)-E(g)
> und bei mir kommt demnach 0 heraus.. Stimmt das so ?!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]