matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitEpsilon-Delta Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Epsilon-Delta Kriterium
Epsilon-Delta Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 So 09.12.2018
Autor: meister_quitte

Aufgabe
Zeigen Sie mittels des [mm] $\epsilon [/mm] - [mm] \delta-\$Kriteriums [/mm] für die Stetigkeit, dass die folgenden Funktionen stetig sind:

a) $ [mm] f:\IR\to\IR, f\left( x \right) [/mm] = [mm] \frac{1}{1+x^2}$ [/mm]

b) $ [mm] f:\IR\to\IR, f\left( x \right) [/mm] = [mm] x^4$ [/mm]

Moin Moin Freunde der Mathematik,

diesmal hänge ich am Epsilon-Delta-Krtiterium für stetige Funktionen. Mir fehlt einfach das Gespür für Abschätzungen. Ich habe schon mal etwas gerechnet. Vielen Dank schon mal für eure Engagement.

Mein Ansatz:

[mm] $|x^4-x_0^4|=|\left( x^2-x_0^2 \right) \left( x^2+x_0^2 \right)|=|\left( x-x_0 \right)\left( x+x_0 \right) \left( x^2+x^2_0 \right)|\le\delta \left( x+x_0 \right) \left( x^2+x^2_0 \right)$ [/mm]

Liebe Grüße

Christoph

        
Bezug
Epsilon-Delta Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 So 09.12.2018
Autor: leduart

Jetzt wähle ein vorläufiges [mm] \delta, [/mm] z.B. 0,5 und ersetze dadurch deine Ausdrücke, am Ende dann das Min von [mm] \delta(\epsilon [/mm] und dem vorläufigen.
Gru0 leduart

Bezug
                
Bezug
Epsilon-Delta Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 So 09.12.2018
Autor: meister_quitte

Hallo leduart,

leider verstehe ich deinen Ansatz nicht ganz. Ich verstehe, dass ich Delta 0,5 wählen kann, da Delta größer null ist. Aber in welchen Ausdrücken darf ich das noch?

Liebe Grüße

Christoph

Bezug
                        
Bezug
Epsilon-Delta Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 So 09.12.2018
Autor: Gonozal_IX

Hiho,

> leider verstehe ich deinen Ansatz nicht ganz. Ich verstehe,
> dass ich Delta 0,5 wählen kann, da Delta größer null
> ist. Aber in welchen Ausdrücken darf ich das noch?

[mm] \delta [/mm] fix zu wählen ist bei den meisten Funktionen nicht wirklich zielführend…
Was man meistens annehmen kann/darf/muss ist, dass [mm] \delta [/mm] kleiner als eine bestimmte Zahl, z.B. 0.5 ist.
Da man nur ein [mm] $\delta [/mm] > 0$ finden muss, ist das aber keine Einschränkung.

Nun zu deiner Aufgabe:
Vorweg: Dein Ansatz ist ok und zielführend!

1.) Als erstes machst du einen kleinen, aber u.U. entscheidenden Fehler:

> $ [mm] |x^4-x_0^4|=|\left( x^2-x_0^2 \right) \left( x^2+x_0^2 \right)|=|\left( x-x_0 \right)\left( x+x_0 \right) \left( x^2+x^2_0 \right)|\le\delta \left( x+x_0 \right) \left( x^2+x^2_0 \right) [/mm] $

Im letzten Schritt lässt du die Betragsstriche weg, was im Allgemeinen falsch ist.
Es könnte [mm] $\left( x+x_0 \right) [/mm] < 0$ gelten.

2.) Bedenke, dass dein [mm] $\delta$ [/mm] durchaus auch von [mm] $x_0$ [/mm] abhängen darf, d.h. wenn du
sowas hinbekommst wie

$|f(x) - f(y)| [mm] \le \delta g(x_0)$ [/mm] für irgendeinen Ausdruck [mm] $g(x_0)$, [/mm] dann bist du fertig (warum?)

3.) Bedenke weiterhin, dass für das vorkommende [mm] $x\in\IR$ [/mm] ja gilt $|x - [mm] x_0| [/mm] < [mm] \delta$ [/mm] gilt.
Daraus kann man sich schöne weitere Abschätzungen "basteln". z.B.

i) [mm] $x_0 [/mm] - [mm] \delta [/mm] < x < [mm] x_0 [/mm] + [mm] \delta$ [/mm]
ii) $|x| = |x - [mm] x_0 [/mm] + [mm] x_0| \le \delta [/mm] + [mm] |x_0|$ [/mm]
iii) $|x - [mm] x_0|^2 [/mm] < [mm] \delta^2$ [/mm]

Das liefert dir mögliche Abschätzungen für x und du kannst deinen Ausdruck weiter (nach oben) abschätzen:

$ [mm] |x^4-x_0^4|=\ldots \le\delta \left|x+x_0 \right| \left( x^2+x^2_0 \right) \le \delta \left(2|x_0| + \delta\right)(\delta^2 [/mm] + [mm] 2x_0^2 [/mm] + [mm] 2\delta |x_0|) \le [/mm] 4 [mm] \delta (|x_0| [/mm] + [mm] \delta)^3$ [/mm]

Für [mm] $x_0 [/mm] = 0$ ist damit:
$ [mm] |x^4-x_0^4| \le [/mm] 4 [mm] \delta^4$ [/mm]

Für [mm] $x_0 \not=0$ [/mm] ist damit (bei geeigneter Wahl von [mm] $\delta$): [/mm]
$ [mm] |x^4-x_0^4| \le 32\delta |x_0|^3$ [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Epsilon-Delta Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 So 09.12.2018
Autor: meister_quitte

Hallo Gono,

vielen Dank dass hat geholfen.

Ein Schönes Restwochenende wünsche ich dir.

Liebe Grüße

Christoph

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]