matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitEpsilon Bedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Epsilon Bedingung
Epsilon Bedingung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon Bedingung: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 19:52 Fr 14.04.2006
Autor: Johlan

Aufgabe
Zeigen Sie unter verwendung der  [mm] \varepsilon, \delta [/mm]  Bedingung, dass die Funktion

f:  [mm] \IR \mapsto \IR [/mm] , f(x) := [mm] \bruch{x - 1}{x^{2} + 1} [/mm]  in [mm] x_{0} [/mm] stetig ist.

f(x) = [mm] \bruch{x - 1}{x^{2} + 1} [/mm]

[mm] \left| x - x_{0} \right| [/mm] = [mm] \left| x - (-1) \right| [/mm] = [mm] \left| x +1 \right| \le \delta [/mm]

[mm] \left| f(x) - f(x_{0}) \right| [/mm] = [mm] \left| \bruch{x - 1}{x^{2} + 1} - 1 \right| \le \varepsilon [/mm]


x - 1 < x + 1  [mm] \le \delta [/mm]
[mm] x^{2} [/mm] + 1 < (x + [mm] 1)^{2} \le \delta^{2} [/mm]
[mm] \delta [/mm] und [mm] \delta^{2} [/mm] einsetzen in  [mm] \left| f(x) - f(x_{0}) \right| [/mm]
ergibt [mm] \left| \bruch{\delta}{\delta^{2}} - 1 \right| [/mm] <  [mm] \varepsilon [/mm]

=>  [mm] \left| \bruch{1}{\delta} - 1 \right| [/mm] <  [mm] \varepsilon [/mm]

Und das ist Unsinn denn [mm] \varepsilon [/mm] muss ja größer 0 sein.
Ist wenigstens der Ansatzt richtig?

Ich habe es auch schonmal anders versucht,
aber bin mit dem Bruch [mm] \bruch{x - 1}{x^{2} - 1} [/mm] nicht weiter gekommen.
Wäre die Dreiecksungleichung ein guter Ansatzt?
Damit wurde es aber sehr umfangreich und kompliziert.

Mfg

Johlan



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Epsilon Bedingung: Nullstelle falsch!
Status: (Antwort) fertig Status 
Datum: 20:16 Fr 14.04.2006
Autor: leduart

Hallo Johlan
> Zeigen Sie unter verwendung der  [mm]\varepsilon, \delta[/mm]  
> Bedingung, dass die Funktion
>  
> f:  [mm]\IR \mapsto \IR[/mm] , f(x) := [mm]\bruch{x - 1}{x^{2} + 1}[/mm]  in
> [mm]x_{0}[/mm] stetig ist.
>  f(x) = [mm]\bruch{x - 1}{x^{2} + 1}[/mm]
>  
> [mm]\left| x - x_{0} \right|[/mm] = [mm]\left| x - (-1) \right|[/mm] = [mm]\left| x +1 \right| \le \delta[/mm]

Da liegt dein 1.  Fehler : wenn mit [mm] x_{0} [/mm] die Nullstelle gemeint ist, dann ist [mm] x_{0}=1 [/mm] und nicht -1
dann schreib erst mal deine Beh. richtig auf.
dann benutze [mm] $x^2+1 \ge [/mm] 1$  und damit [mm] $1/(x^2+1)\le1$ [/mm]
Wenn dein [mm] x_{0}=-1 [/mm] vorgegeben ist, dann bring dein f(x)-f(1) erst mal auf einen Nenner! benutze wieder  [mm] $1/(x^2+1)\le1$ [/mm] und 0<x<x+1 dann bist du schnell fertig.

> [mm]\left| f(x) - f(x_{0}) \right|[/mm] = [mm]\left| \bruch{x - 1}{x^{2} + 1} - 1 \right| \le \varepsilon[/mm]

f(-1)=-1, dh falsch :  
richtig: [mm]\left| \bruch{x - 1}{x^{2} + 1} +1 \right| \le \varepsilon[/mm]

Ich hoff, jetzt kommst du durch
Gruss leduart

Bezug
                
Bezug
Epsilon Bedingung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:48 Sa 15.04.2006
Autor: Johlan

Sorry erstmal, hatte was vergessen.
Das [mm] x_{0} [/mm] war/ist mit -1 vorgegeben.

Ich weiß nicht wie ich im Nenner [mm] \delta [/mm] einbringen kann
(bzw.das x wegbekommen kann).
Tipps?
Danke üprigens für die schnelle Antwort.

Mfg

Johlan


Bezug
                        
Bezug
Epsilon Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 15.04.2006
Autor: Walde

Hi Johlan,

leduart hat dir eigentlich die besten Tipps schon gegeben: auf einen Nenner bringen und die Abschätzungen benutzen.

[mm] |f(x)-f(x_0)|=|\bruch{x-1}{x^2+1}+1|=|\bruch{x-1+x^2+1}{x^2+1}|\le|x-1+x^2+1|=... [/mm]

usw. du musst nur noch 0<x<x+1 benutzen, dann hast du's.

L G walde

Bezug
                                
Bezug
Epsilon Bedingung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 15.04.2006
Autor: Johlan

Ich verstehe nicht ganz wie ich die Aschätzung (0<x<x+1) benutzen soll.
So hätte ich es versucht
[mm] \left|x-1+x^2+1\right|= \left|x + x^{2} \right| [/mm] = [mm] \left| x(1 + x) \right| [/mm] = [mm] \left| x(\delta) \right| [/mm]
aber ich komme einfach nicht weiter.

Mfg

Johlan


Bezug
                                        
Bezug
Epsilon Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Sa 15.04.2006
Autor: Walde

Hi nochmal,


Probiers mal mit  [mm] |x(x+1)|\le|(x+1)(x+1)|\le\delta^2 [/mm]

L G walde


Bezug
                                                
Bezug
Epsilon Bedingung: Korrektur/Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:27 So 16.04.2006
Autor: Johlan

Ich habs mal so probiert wie du vorgeschlagen hast:

Zu zeigen: [mm] \left| f(x) - f(x_{0})\right| \le \varepsilon [/mm] für alle x mit [mm] \left| x - x_{0}\right| \le \delta [/mm]

[mm] \left| x - x_{0}\right| [/mm] = [mm] \left| x - (-1) \right| [/mm] = [mm] \left| x + 1 \right| \le \delta [/mm]

[mm] \left| f(x) - f(x_{0})\right| [/mm] = [mm] \left| \bruch{x - 1}{x^{2} + 1} - (-1) \right| [/mm] = [mm] \left| \bruch{x - 1}{x^{2} + 1} + 1 \right| [/mm] = [mm] \left| \bruch{x - 1 + x^{2} + 1}{x^{2} + 1} \right| [/mm] = [mm] \left| \bruch{x + x^{2}}{x^{2} + 1} \right| \le \left| x + x^{2} \right| [/mm] = [mm] \left| x(1 + x) \right| \le \left| (x + 1)(x + 1) \right| \le \delta^{2} \le \varepsilon [/mm]

[mm] \Rightarrow \delta \le \wurzel{\varepsilon} [/mm]

Ist das so überhaupt richtig?
Und falls es richtig ist, muss ich jetzt noch ein epsilon und ein delta finden(konkrete Werte) die die Ungleichung erfüllen oder reicht es das die Ungleichung erfüllbar ist?

Mfg

Johlan

PS: Danke übrigens das ihr euch so viel Mühe macht und so viel Geduld mit mir habt!




Bezug
                                                        
Bezug
Epsilon Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 So 16.04.2006
Autor: Walde

Hi johlan,

jaja, die epsilon-delta Definition ist sehr verwirrend am Anfang.


Aber du hast es jetzt richtig.

> Ich habs mal so probiert wie du vorgeschlagen hast:
>  
> Zu zeigen: [mm]\left| f(x) - f(x_{0})\right| \le \varepsilon[/mm]
> für alle x mit [mm]\left| x - x_{0}\right| \le \delta[/mm]
>  
> [mm]\left| x - x_{0}\right|[/mm] = [mm]\left| x - (-1) \right|[/mm] = [mm]\left| x + 1 \right| \le \delta[/mm]
>  
> [mm]\left| f(x) - f(x_{0})\right|[/mm] = [mm]\left| \bruch{x - 1}{x^{2} + 1} - (-1) \right|[/mm]
> = [mm]\left| \bruch{x - 1}{x^{2} + 1} + 1 \right|[/mm] = [mm]\left| \bruch{x - 1 + x^{2} + 1}{x^{2} + 1} \right|[/mm]
> = [mm]\left| \bruch{x + x^{2}}{x^{2} + 1} \right| \le \left| x + x^{2} \right|[/mm]
> = [mm]\left| x(1 + x) \right| \le \left| (x + 1)(x + 1) \right| \le \delta^{2} \le \varepsilon[/mm]

>  
> [mm]\Rightarrow \delta \le \wurzel{\varepsilon}[/mm]
>  
> Ist das so überhaupt richtig?

schreib ein es einfach so am Ende:

[mm] \ldots\le\delta^{2} [/mm] und definiere dann [mm] \delta:=\wurzel{ \epsilon} [/mm]


>  Und falls es richtig ist, muss ich jetzt noch ein epsilon
> und ein delta finden(konkrete Werte) die die Ungleichung
> erfüllen oder reicht es das die Ungleichung erfüllbar ist?

Es heisst doch am Anfang der Definition zu Stetigkeit:'zu jedem [mm] \epsilon>0 [/mm] gibt es ein [mm] \delta...' [/mm] Das heisst [mm] \delta [/mm] hängt von [mm] \epsilon [/mm] ab. Und wie? Eine Möglichkeit hast du grade ausgerechnet, nämlich so [mm] \delta=\wurzel{ \epsilon}. [/mm] Wählst du z.B. [mm] \epsilon=5, [/mm] dann weisst du, dass dein [mm] \delta=\wurzel{5} [/mm] sein muss, um die Stetigkeitsbedingung zu zeigen. Für [mm] \epsilon=0,01, \delta=0,1 [/mm] usw. Und da es für beliebige kleine [mm] \epsilon(>0) [/mm] so ein [mm] \delta [/mm] gibt, ist f stetig im Punkt [mm] x_0. [/mm]

>  
> Mfg
>  
> Johlan
>  
> PS: Danke übrigens das ihr euch so viel Mühe macht und so
> viel Geduld mit mir habt!
>  

Kein Thema ;-)

L G walde  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]