matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitEpsilon Delta Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Epsilon Delta Verfahren
Epsilon Delta Verfahren < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon Delta Verfahren: Abschätzen von Funktionen
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 11.03.2014
Autor: bombom

Aufgabe
Zeigen Sie mit der [mm] (\epsilon, \delta)- [/mm] Definition,dass die durch


[mm] f(x)=\left\{\begin{matrix} \bruch{e^-^x^3*sin(x^3)} {x*arsinh(|x|^\bruch{3}{4})}, & x\ne0\\ 0, & x=0 \end{matrix}\right. [/mm]

gegebene Funktion f im Nullpunkt stetig ist.



wie schätze ich die Funktionen richtig ab?

mein Ansatz erstmal Betragsstriche Verteilen:
[mm] |f(x)-f(0)|=\bruch{|e^-^x^3|*|sin(x³)|} {|x|*|arsinh(|x|^\bruch{3}{4})|}\le\bruch{|e^-^x^3|*|x|^3} {|x|*|arsinh(|x|^\bruch{3}{4})|} [/mm]

sin|x| habe ich hier mit dem Argument abgeschätzt da
sin(x)< x
wenn ich das richtig verstanden habe. Ich weiß nun nicht wie ich den rest abschätzen kann. Ich habs selbst versucht aber es hat nicht geklappt weil ich nicht weiss, wie ich mit der e-Funktion und dem arsinh umgehen soll. Der Prof hat in der Musterlösung den Mittelwertsatz benutzt für arsinh und benutzt:
[mm] arsinhy\ge\bruch{1}{\wurzel{2}}*y [/mm]

Danke schonmal :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Epsilon Delta Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 11.03.2014
Autor: leduart

Hallo
1. wie kommst du von sin(x) auf [mm] x^3? [/mm]
warum nimmst du nicht die Abschätzung aus der Vorlesung, odr die Tangente in 0 liegt immer oberhalb arsinh(x), jede Sehne unterhalb.
Gruss leduart

Bezug
                
Bezug
Epsilon Delta Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Di 11.03.2014
Autor: bombom

Entschuldigung da gehört [mm] sin(x^3) [/mm] hin ich ändere das sofort. Der Pc hatte das nicht übernommen.

Bezug
                
Bezug
Epsilon Delta Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Di 11.03.2014
Autor: bombom

Achja, und in den Vorlesungen haben wir nie diese Art von Funktionen besprochen oder abgeschätzt. Hab auch schon überall im Internet gesucht :(

Bezug
                        
Bezug
Epsilon Delta Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Di 11.03.2014
Autor: DieAcht


> Achja, und in den Vorlesungen haben wir nie diese Art von
> Funktionen besprochen oder abgeschätzt. Hab auch schon
> überall im Internet gesucht :(

Es gilt:

      [mm] $|\sin(x^3)|\le [/mm] 1$ für alle [mm] x\in\IR. [/mm]


DieAcht

Bezug
                                
Bezug
Epsilon Delta Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Mi 12.03.2014
Autor: bombom

Wieso wurde in der Musterlösung dann mit [mm] |x^3| [/mm] abgeschätzt und wie muss ich die anderen beiden Funktionen abschätzen?

Bezug
                                        
Bezug
Epsilon Delta Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mi 12.03.2014
Autor: chrisno

Ich schlage eine strategische Planung vor.
Du willst einen Bruch abschätzen, so dass Du am Ende einen einfachen Ausdruck hast, der von x abhängt und von dem Du weißt, dass er sicher größer als der Bruch ist.
Zur Abschätzung des Zählers muss ein größerer Ausdruck verwendet werden, zur Abschätzung des Nenners ein kleinerer.
Die Sache ist misslungen, wenn am Ende nur noch ein x im Nenner steht.
Also ist es günstig, wenn beim Abschätzen auch möglichst oft das x gekürzt werden kann.
Du hast schon einiges da stehen, vervollständige:
Schätze [mm] $e^{-x^3}$ [/mm] nach oben ab.
Schätze ruhig [mm] $\sin(x^3)$ [/mm] mit [mm] $x^3$ [/mm] nach oben ab.
Bei der Abschätzung für den arsinh musst Du auf den Zusammenhang achten. Stimmt die Situation mit der aus der Vorlesung überein? Ich glaube nicht.Schau Dir den Funktionsgraphen an, noch besser die Ableitungsfunktion, dann bekommst Du eine Idee.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]