matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartete Dauer von bubbles
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Erwartete Dauer von bubbles
Erwartete Dauer von bubbles < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartete Dauer von bubbles: Frage
Status: (Frage) beantwortet Status 
Datum: 20:19 So 17.04.2005
Autor: Hans23

Hallo zusammen.
Ich studiere Wirtschaft und bin gerade dabei eine Seminararbeit zu verfassen. Die Arbeit behandelt Spekulationsblasen in Aktienkursen, wie z.B. die Nemax Blase im Jahr 2000. Die mir zugrunde liegende Literatur ist sehr theoretisch und nur mit wenigen Herleitungen versehen. Nun zum Thema:
Das Grundproblem ist , wie man von Wahrscheinlichkeiten auf die erwartete Dauer einer Blase schliessen kann. Die Wahrscheinlichkeit, dass eine Blase in der nächsten Peridoe " t+1" platzt sei  [mm] \pi [/mm] . Laut dem Text ergibt sich die erwartete "Lebens-"Dauer der Blase dann als   [mm] \bruch{1}{ \pi} [/mm]  .Dieser Zusammenhang sit mir nicht klar.
Klar ist mir, dass wenn die Platzw´keit  [mm] \pi [/mm] beträgt, dann die Nichtplatzw´keit 1 -  [mm] \pi [/mm] beträgt. Somit ergibt die w´keit fürs Platzen in Peridoe "t+3" als  (1- [mm] \pi)^2 [/mm]   [mm] \times \pi [/mm] . Die Blase dauert dann eben 3 Perioden an.
Die W´keit fürs Platzen in Periode "t+j" ergibt sich dann als:  (1- [mm] \pi)^{j-1} [/mm]   [mm] \times \pi [/mm]  . Diese Blase dauert dann j Perioden an.

Somit müsste sich doch die erwartete Dauer einer Blase ergeben als:
   [mm] \summe_{j=1}^{ \infty} [/mm] j   [mm] \times(1- \pi)^{j-1} [/mm]   [mm] \times \pi [/mm]

Wie kommt man dann bitte auf das Ergebnis, dass die Blase eine erwartete Lebensdauer von
[mm] \bruch{1}{ \pi} [/mm]   hat??

Für Eure Hilfe wäre ich sehr dankbar.   Hans23
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartete Dauer von bubbles: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 17.04.2005
Autor: Brigitte

Hallo Johannes!

[willkommenmr]

>  Das Grundproblem ist , wie man von Wahrscheinlichkeiten
> auf die erwartete Dauer einer Blase schliessen kann. Die
> Wahrscheinlichkeit, dass eine Blase in der nächsten Peridoe
> " t+1" platzt sei  [mm]\pi[/mm] . Laut dem Text ergibt sich die
> erwartete "Lebens-"Dauer der Blase dann als   [mm]\bruch{1}{ \pi}[/mm]
>  .Dieser Zusammenhang sit mir nicht klar.
>  Klar ist mir, dass wenn die Platzw´keit  [mm]\pi[/mm] beträgt, dann
> die Nichtplatzw´keit 1 -  [mm]\pi[/mm] beträgt. Somit ergibt die
> w´keit fürs Platzen in Peridoe "t+3" als  (1- [mm]\pi)^2[/mm]  
> [mm]\times \pi[/mm] . Die Blase dauert dann eben 3 Perioden an.
> Die W´keit fürs Platzen in Periode "t+j" ergibt sich dann
> als:  (1- [mm]\pi)^{j-1}[/mm]   [mm]\times \pi[/mm]  . Diese Blase dauert
> dann j Perioden an.
>  
> Somit müsste sich doch die erwartete Dauer einer Blase
> ergeben als:
>     [mm]\summe_{j=1}^{ \infty}[/mm] j   [mm]\times(1- \pi)^{j-1}[/mm]  
> [mm]\times \pi[/mm]

[ok] völlig richtig. Hier gibt es zwei Möglichkeiten weiterzumachen. Entweder Du erkennst/glaubst, dass hier die sogenannte geometrische Verteilung vorliegt und diese als Erwartungswert genau den Kehrwert der "Erfolgswahrscheinlichkeit" (hier Wkt. für Platzen) besitzt, oder - und ich habe den Eindruck, dass das für Dich eher hilfreich ist - wir rechnen die Reihe einfach aus:

Für die geometrische Reihe gilt ja (mit 0<p<1)

[mm]\sum\limits_{j=0}^\infty p^j=\frac{1}{1-p}.[/mm]

Differenziert man nun auf beiden Seiten nach p, ergibt sich

[mm]\sum\limits_{j=1}^\infty j\cdot p^{j-1}=-\frac{1}{(1-p)^2}\cdot (-1)=\frac{1}{(1-p)^2}.[/mm]

(Der Summand für j=0 ist ja ohnehin 0.)
Verwendet man dieses Ergebnis mit [mm] $p=1-\pi$, [/mm] folgt aus obiger Formel

[mm]\summe_{j=1}^{ \infty} j \cdot (1- \pi)^{j-1}\cdot \pi=\pi\summe_{j=1}^{ \infty} j \cdot (1- \pi)^{j-1}=\pi\cdot \frac{1}{\pi^2}=\frac{1}{\pi}.[/mm]

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]