matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikErwartungswert Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Erwartungswert Schätzer
Erwartungswert Schätzer < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Schätzer: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:02 Mo 27.04.2020
Autor: TS85

Aufgabe
Betrachten sie gewöhnliche lineare Regressionsmodell
[mm] Y_i =ax_i+b+ \epsilon_i, [/mm] i=1,...,n

Betrachten sie nun allgemeine lineare Schätzer:
[mm] \vec{a} =\summe_{i=1}^{n}w_iY_i [/mm]

[mm] \vec{b} =\overline{Y}-\vec{a} \overline{x} [/mm]

mit Mittelwerten [mm] \overline{x}=1/n*\summe_{i=1}^{n}x_i [/mm]
und [mm] \overline{Y}=1/n*\summe_{i=1}^{n}Y_i [/mm]

(a) Welche Bedingung an die Gewichte ergibt die Voraussetzung, dass der Schätzer erwartungstreu sein soll?
(b)Berechnen sie [mm] Var(\vec{b}), Var(\vec{a}), [/mm] sowie [mm] Cov(\vec{a},\vec{b}). [/mm]
(c) Leiten sie optimale Gewichte her welche für erwartungstreue Schätzer die mittleren quadratischen Fehler (MSE, mean squared error) der Modellvorhersagen,

[mm] E[(\vec{b}-\vec{a}x_i-Y_i)^2] [/mm]

minimieren. Dazu können sie ein Minimierungsproblem mit Nebenbedingung (Lagrange Multiplikatoren) lösen.


Hallo,

für die Schätzer habe ich mal ein Vektorzeichen verwendet, da mir die Verwendung von hat hierzu unklar ist.

Meine Probleme bei (a) und (b) bestehen vermutlich erstmal hauptsächlich daraus, zu unterscheiden was Zufallsvariable ist und was nicht:

[mm] (a)E(\vec{b})=E(\overline{Y}-\vec{a}\overline{x})=E(\overline{Y})-E(\vec{a})\overline{x}=a\overline{x}+b-a\overline{x}=b [/mm]

[mm] E(\vec{a})=E(\summe_{i=1}^{n}w_iY_i)=E(x_1Y_1+...+w_nY_n)=w_1E(Y_1)+...+w_nE(Y_n)=w_1y_1+...+w_nY_n=a [/mm]

also erwartungstreue Schätzer. Die Bedingung an die Gewichte, damit dies erfüllt ist:
i=1,...,n: [mm] 0\le w_i \le [/mm] 1 [mm] \wedge \summe_{i=1}^{n}w_i=1 [/mm]
Ansonsten müsste gelten:
[mm] E(\vec{a})=\frac{a}{\summe_{i=1}^{n}w_i} [/mm] (?)
Dieser Lösungsansatz kommt mehr aus der Anwendung von allgemeinen arithmetisch gewichteten Mittelwerten.

(b)Hier gehen die größeren Probleme los, was eigentlich Zufallsvariable ist und was nicht:

[mm] Var(\vec{b})=Var(\overline{Y}-\vec{a}\overline{x})=E((\overline{Y}-\vec{a}\overline{x})^2)-E(\overline{Y}-\vec{a}\overline{x})^2 [/mm]
[mm] =E(\overline{Y}^2-2\overline{Y}\vec{a}\overline{x}+\vec{a}^2\overline{x}^2)-b^2 [/mm]
[mm] E(\overline{Y}^2)-E(2\overline{Y}\vec{a}\overline{x})+E(\vec{a}^2\overline{x}^2)-b^2 [/mm]

Ist dies bis hierhin überhaupt richtig und wenn ja, wie geht es weiter?
Mir ist unklar, was eigentlich genau für folgendes gilt:

[mm] E(\overline{Y})=E(\frac{1}{n}\summe_{i=1}^{n}Y_i) [/mm]
[mm] =\frac{1}{n}\summe_{i=1}^{n}E(Y_i). [/mm]
Im Falle einer Wahrscheinlichkeitsverteilung könnte man nun schreiben
[mm] \frac{1}{n}\summe_{i=1}^{n}p_i, [/mm] aber was gilt hier?

[mm] Var(\vec{a})=Var(\summe_{i=1}^{n}w_iY_i) [/mm]
[mm] =E(\summe_{i=1}^{n}w_i^2Y_i^2)-E(\summe_{i=1}^{n}w_iY_i)^2 [/mm]
[mm] =\summe_{i=1}^{n}w_i^2E(Y_i^2)-(\summe_{i=1}^{n}w_iE(Y_i))^2 [/mm]


[mm] Cov(\vec{a},\vec{b})=E(\vec{a}\vec{b})-E(\vec{a})E(\vec{b}) [/mm]
[mm] =E((\summe_{i=1}^{n}w_iY_i)*(\overline{Y}-\vec{a}\overline{x}))-ab [/mm]

Bevor ich hier nun weitermache, wäre eine Korrektur hilfreich.

Zu (c) habe ich noch nichts gemacht, ich wollte die Frage nur schonmal dazu gestellt haben anstelle ein neues Thema aufzumachen.

        
Bezug
Erwartungswert Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 27.04.2020
Autor: Gonozal_IX

Hiho,

> Meine Probleme bei (a) und (b) bestehen vermutlich erstmal
> hauptsächlich daraus, zu unterscheiden was Zufallsvariable
> ist und was nicht:

na dann solltest du in die Definitionen schauen.
Es ist doch gegeben:

>  [mm]Y_i =ax_i+b+ \epsilon_i[/mm]

Was ist [mm] $a,x_i,b,\epsilon_i$? [/mm]
Welche zusätzliche Bedingungen gelten?

Bevor du das nicht nachgeschlagen hast, nützt jede Rechnung nix…

Gruß,
Gono

Bezug
                
Bezug
Erwartungswert Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 27.04.2020
Autor: TS85

Im Allgemeinen gilt [mm] E(\epsilon_i)=0, [/mm] d.h.
[mm] E(Y_i)=a*E(x_i)+b, [/mm]
da es sich bei a,b um fixe Konstanten handelt.

[mm] Y_i [/mm] ~ [mm] \mathcal{N}(ax_i+b,\sigma^2) [/mm]

Satz von Gauss Markov:
Minimale Varianz: [mm] Var(\vec{\beta})=(X^T_\Sigma X_\Sigma)^{-1} [/mm]

Mehr Information sind mir via Skript/Buch nicht vorhanden.

Führen die Varianzen hier auch auf [mm] Var(\vec{a})=\sigma^2*a [/mm] (und b ebenso)?

Etwas mehr Hilfe wäre hilfreich

Bezug
                        
Bezug
Erwartungswert Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 27.04.2020
Autor: Gonozal_IX

Hiho,

> Im Allgemeinen gilt [mm]E(\epsilon_i)=0,[/mm] d.h.

aha, warum? Was ist denn [mm] $\epsilon_i$? [/mm]

>  [mm]E(Y_i)=a*E(x_i)+b,[/mm]

Aha, und was ist nun [mm] $E(x_i)$? [/mm]

>  da es sich bei a,b um fixe Konstanten handelt.

Na das ist doch mal eine konkrete Aussage.
Eine analoge Aussage bitte noch über [mm] $x_i$ [/mm] und [mm] $\epsilon_i$ [/mm]
Was ist [mm] $x_i$ [/mm] und was ist [mm] $\epsilon_i$? [/mm]

> [mm]Y_i[/mm] ~ [mm]\mathcal{N}(ax_i+b,\sigma^2)[/mm]

Das stimmt erst mal, aber warum?
Das ergibt sich, wenn du obige Frage bezüglich [mm] x_i [/mm] und [mm] \epsilon_i [/mm] beantwortest.

> Mehr Information sind mir via Skript/Buch nicht vorhanden.

Na mindestens meine Frage oben lässt sich bestimmt noch beantworten.
Zusätzlich solltest du auch noch nachschlagen, wie die [mm] $\epsilon_i$ [/mm] zusammenhängen (oder gerade nicht).

> Etwas mehr Hilfe wäre hilfreich

Hilfe wird hier gern gegeben. Eine gewisse Grundlage - und dazu zählt das einfache Nachschlagen der Definitionen - solltest du aber selbst mitbringen.

Wenn du obige Fragen beantwortet hast, ergeben sich die Lösungen aus den Rechenregeln für Erwartungswert und Varianz…

Gruß,
Gono


Bezug
                        
Bezug
Erwartungswert Schätzer: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:52 Mi 29.04.2020
Autor: TS85

Ich habe noch eine Frage in Bezug auf (b) in Verbindung mit (d):

Wenn [mm] \summe_{i=1}^{n}w_i [/mm] =0 gilt
mit [mm] w_i=\frac{(x_i-\overline{x})}{\summe_{j=1}^{n}(x_j-\overline{x})^2} [/mm]
dann lässt sich die Darstellung anhand von [mm] \beta_1 [/mm] herleiten
durch den Verschiebungssatz von Steiner und der nichtzentrierten Darstellung.
Ist es richtig, wenn ich sage, dass sich [mm] \summe_{i=1}^{n}w_i=0 [/mm] daran ergibt, dass die KQ-Regressionsgerade so bestimmt wird, sodass die Residuuenquadratsumme eine Minimum wird und damit die Summe [mm] \frac{Abweichung_ x_i zu_ \overline{x}}{Quadratsumme} [/mm] =0 sein muss? (bzw. hier aufgrund der Eigenschaft von [mm] \overline{x}) [/mm]



Auf [mm] \beta=(\beta_0,\beta_1) [/mm] gelangt man in herkömmlicherweise über Nullsetzen der partiellen Ableitungen (hier mit Lagrange-Fkt)

[mm] \mathcal{L}(\vec{a},\vec{b},\lambda)=\frac{1}{2}\summe_{i=1}^{n}(Y_i-\vec{b}+\vec{a}x_i)^2-\lambda(\summe_{i=1}^{n}w_i). [/mm]

Meine Frage hierzu: Gibt es einen tieferen Sinn der Gewichte in Bezug auf die Lagrange Funktion, weil dies hier überhaupt nicht zum Lösen der Aufgabe notwendig ist? (In Gleichungssystem unrelevant bzw. lediglich Aussage [mm] \summe_{i=1}^{n}w_i=0). [/mm]

Vielen Dank schonmal im Voraus, ich hoffe meine Frage kommt herüber (dass [mm] \beta [/mm] und a,b durcheinander sei hier jetzt mal unrelevant)

Bezug
                                
Bezug
Erwartungswert Schätzer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 01.05.2020
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]