matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraErzeugendensystem und Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Erzeugendensystem und Basis
Erzeugendensystem und Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem und Basis: hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 26.04.2007
Autor: wulfstone

Aufgabe
Wir betrachten folgende Teilmengen des  [mm] \IR^{3}: [/mm]

$ U:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}$ [/mm]
$ V:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]
$ W:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]


Welche dieser Mengen bilden ein Erzeugendensystem und welche eine Basis des [mm] \IR^{3} [/mm]

hallo erstmal,
es soll eigentlich ganz einfach sein,
doch habe ich probleme mir das erzeugendensystem und die basis vorzustellen, bzw. sind unsere definitionen dafür sehr dürftig,

könnte mir mal jemand zumindest an einer menge zeigen wie das geht,

danke

mfg
wulfstone

        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Do 26.04.2007
Autor: Bastiane

Hallo wulfstone!

> Wir betrachten folgende Teilmengen des  [mm]\IR^{3}:[/mm]
>  
> [mm]U:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}[/mm]
>  
> [mm]V:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
> [mm]W:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
>
> Welche dieser Mengen bilden ein Erzeugendensystem und
> welche eine Basis des [mm]\IR^{3}[/mm]
>  hallo erstmal,
>  es soll eigentlich ganz einfach sein,
>  doch habe ich probleme mir das erzeugendensystem und die
> basis vorzustellen, bzw. sind unsere definitionen dafür
> sehr dürftig,

Naja, aber Definitionen kann man doch nachlesen. Und gerade so elementare Definitionen finden sich in jedem passenden Mathebuch, und auch in Wikipedia und sonst im Internet.

Für ein Erzeugendensystem musst du jeden Vektor des Vektorraums erzeugen können. In deinem Fall hast du den [mm] \IR^3, [/mm] das heißt, du musst in jeder Komponente etwas erzeugen können, bzw. auch jede reelle Zahl erzeugen können. Hättest du also z. B. drei Vektoren: [mm] \vektor{0\\1\\0}, \vektor{0\\0\\0} [/mm] und [mm] \vektor{0\\0\\1}, [/mm] so könntest du für die zweite und dritte Komponente jede relle Zahl erzeugen (mit reellen Koeffizienten in einer Linearkombination), aber egal, welchen Koeffizienten du wählst, du wirst nie eine Zahl außer 0 in der ersten Komponenten erzeugt bekommen. Demnach wäre dies kein Erzeugendensystem, weil eben nur Elemente der Form [mm] \vektor{0\\a\\b} [/mm] für [mm] a,b\in\IR [/mm] erzeugt werden können.

Jede Basis ist auch ein Erzeugendensystem (aber nicht umgekehrt), oder jedes linear unabhängige Erzeugendensystem ist auch eine Basis. Wenn du also etwas hast, was kein Erzeugendensystem ist, kann es auch keine Basis sein. Wenn du ein Erzeugendensystem hast, musst du überprüfen, ob die Vektoren linear unabhängig sind, wenn ja, hast du eine Basis, wenn nein, ist es bloß ein Erzeugendensystem.

In deinem Fall kannst du nun auch noch überlegen, dass alle Basen zu einem Vektorraum genauso viele Elemente haben. Sollten also U oder V eine Basis sein, kann W keine sein, weil W eine Dimension mehr hat. Außerdem kannst du wissen, dass eine Basis des [mm] \IR^3 [/mm] genau 3 Basisvektoren hat, demnach kann W sowieso schon keine Basis sein.

Es gibt da noch einiges anderes, was man sich überlegen kann, ist aber hier vielleicht nicht nötig. Und das kannst du bei Gelegenheit in Bücher oder im Netz lesen.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]