matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraErzeugendensystem und Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Erzeugendensystem und Basis
Erzeugendensystem und Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem und Basis: des R^3
Status: (Frage) beantwortet Status 
Datum: 18:41 Fr 14.09.2007
Autor: elefanti

Aufgabe
Welche der Teilmengen des [mm] \IR^3 [/mm] bilden ein Erzeugendensystem und welche eine Basis des [mm] \IR^3? [/mm]
A = { [mm] \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} [/mm] }
B = { [mm] \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\1} [/mm] }
C = { [mm] \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\1}, \vektor{0 \\ 0 \\ 1} [/mm] }

Hallo,


meine Lösung ist:
A: Keine Basis
B: Basis
C: Keine Basis

Ein Erzeugendensystem ist doch nur die Darstellung als
[mm] \lambda1*vektor1 [/mm] + [mm] \lambda2*vektor2..., [/mm] oder? Dann sollten ja alle drei Teilmengen Erzeugendensysteme sein.

Für eine Basis müssen die Vektoren linear unabhängig sein:
A:
1 0 1 0
1 1 0 0
1 1 0 0

=> III-II
1 0 1 0
1 1 0 0
0 0 0 0

=>
x + z =0  <=> x = -z
x + y = 0  <=> x = -y

Somit sind die Vektoren aus A linear abhängig, also ist A keine Basis des [mm] \IR^3. [/mm]


B:
1 0 0 0
1 1 0 0
1 1 1 0

=> III-II
1 0 0 0
1 1 0 0
0 0 1 0

=> II-I
1 0 0 0
0 1 0 0
0 0 1 0


x = 0, y = 0, z = 0, also ist B eine Basis des [mm] \IR^3. [/mm]

C:
1 0 0 0 0
1 1 1 0 0
1 0 1 1 0

=> II-III
1 0 0 0 0
0 1 0-1 0
1 0 1 1 0

=> III-I
1 0 0 0 0
0 1 0-1 0
0 0 1 1 0

=>
w = 0
x - z = 0  <=> x = z
y + z = 0 <=> z = -y

Somit sind die Vektoren aus C linear abhängig, und bilden keine Basis des [mm] \IR^3. [/mm]


Über eine Korrektur würde ich mich freuen ;-)



Vielen Dank im voraus und liebe Grüße
Elefanti



        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Fr 14.09.2007
Autor: angela.h.b.


> Welche der Teilmengen des [mm]\IR^3[/mm] bilden ein
> Erzeugendensystem und welche eine Basis des [mm]\IR^3?[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  A = { [mm]\vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  B = { [mm]\vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  C = { [mm]\vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\1}, \vektor{0 \\ 0 \\ 1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  Hallo,
>  
>
> meine Lösung ist:
>  A: Keine Basis
>  B: Basis
>  C: Keine Basis

Hallo,

Deine Lösungen sind richtig zwar richtig, aber in der Begründung unvollständig.

>  
> Ein Erzeugendensystem ist doch nur die Darstellung als
> [mm]\lambda1*vektor1[/mm] + [mm]\lambda2*vektor2...,[/mm] oder? Dann sollten
> ja alle drei Teilmengen Erzeugendensysteme sein.

Nein. "Erzeugendensystem von [mm] \IR^3" [/mm] sagt, daß Du mit den gegebenen Vektoren jeden beliebigen Vektor aus [mm] \IR^3 [/mm] durch Linearkombination erzeugen kannst.

Eine Basis ist ein linear unabhängiges Erzeugendensystem.

Du mußt also über Erzeugendensystem auch noch nachdenken.


Ich weiß nun natürlich nicht, wie weit Eure Fortschritte in der linearen Algebra gediehen sind. Wenn Ihr den Dimensionsbegriff hattet und den wichtigen Satz, daß alle Basen gleichmächtig sind, dann weißt Du, daß jede linear unabhängige Menge von 3 Vektoren aus [mm] \IR^3 [/mm] eine Basis sind.

Gruß v. Angela



Bezug
                
Bezug
Erzeugendensystem und Basis: Erzeugendensysteme
Status: (Frage) beantwortet Status 
Datum: 19:59 Fr 14.09.2007
Autor: elefanti

Hallo Angela,

vielen Dank für deine Korrektur.
Ich bin jetzt doch ein wenig verwirrt. Habe ich das so richtig verstanden?
- A und B sind Erzeugendensysteme des [mm] \IR^3, [/mm] weil sie aus drei Vektoren bestehen und man mit drei Vektoren immer jeden Vektor aus [mm] \IR^3 [/mm] darstellen kann
- C kann kein Erzeugendensystem von [mm] \IR^3 [/mm] sein, weil C vier Vektoren enthält. Somit kann C auch keine Basis sein.


Liebe Grüße
Elefanti

Bezug
                        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Fr 14.09.2007
Autor: pleaselook

Also lineare Unabhängigkeit ist auf jeden Fall Kriterium für eine Basis. Deshalb ist C keine, denn [mm] v_2+v_4=v_3. [/mm] Ein Erzeugendensystem muß nicht linear unahängig sein, sondern eben nur jeden Vektor erzeugen können. Eine Basis ist deshalb immer ein Erzeugendensystem. Da bei C aber [mm] v_1-v_2-v_4=e_1=\vektor{1\\0\\0}; v_2=e_2=\vektor{0\\1\\0} [/mm] und [mm] v_4=e_3=\vektor{0\\0\\1} [/mm] ist, und [mm] span(e_1,e_2,e_3)=\IR^3 [/mm] ist, handelt es sich immernoch um ein Erzeugendensystem. [mm] {\vektor{0\\0\\1};\vektor{0\\1\\1};\vektor{0\\1\\2};\vektor{0\\3\\1}} [/mm] würde dagegen keine Basis und auch kein Erzeugendensystem des [mm] \IR^3 [/mm] sein. Warum nicht?


Bezug
                                
Bezug
Erzeugendensystem und Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 14.09.2007
Autor: elefanti


> Also lineare Unabhängigkeit ist auf jeden Fall Kriterium
> für eine Basis. Deshalb ist C keine, denn [mm]v_2+v_4=v_3.[/mm] Ein
> Erzeugendensystem muß nicht linear unahängig sein, sondern
> eben nur jeden Vektor erzeugen können. Eine Basis ist
> deshalb immer ein Erzeugendensystem. Da bei C aber
> [mm]v_1-v_2-v_4=e_1=\vektor{1\\0\\0}; v_2=e_2=\vektor{0\\1\\0}[/mm]
> und [mm]v_4=e_3=\vektor{0\\0\\1}[/mm] ist, und
> [mm]span(e_1,e_2,e_3)=\IR^3[/mm] ist, handelt es sich immernoch um
> ein Erzeugendensystem.
>

Um also auf Erzeugendensystem zu testen, versucht man die Vektoren durch die Einheitsbasisvektoren darzustellen.

[mm]{\vektor{0\\0\\1};\vektor{0\\1\\1};\vektor{0\\1\\2};\vektor{0\\3\\1}}[/mm]

> würde dagegen keine Basis und auch kein Erzeugendensystem
> des [mm]\IR^3[/mm] sein. Warum nicht?
>  

Da die drei Vektoren alle als ersten Eintrag eine 0 haben, lassen sie sich nicht als Einheitsbasisvektoren darstellen. Somit ist es kein Erzeugendensystem.

Wie testet man aber allgemein ob es sich um ein Erzeugendensystem handelt? Denn A ist ja ein Erzeugendensystem, aber nicht linear unabhängig (also kann ich mit der Einheitsbasis bei A nichts anfangen).


Liebe Grüße
Elefanti

Bezug
                                        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Fr 14.09.2007
Autor: pleaselook

A ist kein Erzeugendensystem des [mm] \IR^3 [/mm] den [mm] \vektor{0\\0\\1} [/mm] kann durch keine Linearkombination der drei Vekoren dargestellt werden. Deshalb und weil die drei Vektoren  nicht linear unabhängig sind (sonst könnte ich nicht [mm] v_2 [/mm] aus [mm] v_1-v_3 [/mm] erzeugen) ist es auch keine Basis, den  du brauchst ja  3 lin. unabh. Vektoren, um [mm] \IR^3 [/mm] aufzuspannen.
Kurz:
- nicht genug lin. unabh. Vektoren für entsp. Raum -> keine Basis und kein Erzeugendensystem
- n linear unabh. Vektoren sind Basis und gleichzeitig Erzeugendensystem des n-dimensionalen Raumes
- mehr als n Vektoren (n davon linear unahängig, der Rest kann durch die n erzeugt werden)->keine Basis, aber Erzeugendensystem

Oft ist es besser einen Vektor zu finden der das Gegenteil zeigt, als alle unendlich anderen zu prüfen. :-)

Bei C hab ich einfach ausgenutzt (um Erzeugendensystem nachzuweisen), dass ich die drei linear unabhängigen Basisvektoren [mm] e_1, e_2 [/mm] und [mm] e_3 [/mm] erzeugen kann. Und da die eine Basis des [mm] \IR^3 [/mm] sind kann ich sagen das C ein Erzeugendensystem ist. Ein Erzeugendensystem darf linear abhängig sein.
Die Anzahl der Basisvektoren entspricht der Dimension des aufgespannten Raumes.

Bezug
                                                
Bezug
Erzeugendensystem und Basis: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Fr 14.09.2007
Autor: elefanti

Vielen Dank für deine vielen Erklärungen, du hast mir sehr weitergeholfen, danke! :-)



Liebe Grüße
Elefanti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]