matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEuklidischer Ring
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Euklidischer Ring
Euklidischer Ring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Mo 24.01.2005
Autor: Phlipper

Hallo,
ich versuche hier krampfhaft eine Aufgabe zu lösen.
Sie lautet wie folgt:
Man zeige, daß ein kommutativer Ring R mit Einselement, genau dann ein Körper ist, wenn (R[x], deg) ein euklidischer Ring ist.

(R, [mm] \varepsilon) [/mm] euklidischer Ring : [mm] \gdw [/mm]
1)  [mm] \varepsilon: \IR\{0} \mapsto \IN# [/mm]
2) Für alle a,b [mm] \in \IR\{0} [/mm] existieren q,r [mm] \in \IR [/mm]
(a = qb + r  [mm] \wedge \varepsilon(r) [/mm]  < [mm] \varepsilon(b) [/mm]

Könnte mir bitte jemand beim Ansatz helfen, ich habe immer Probleme bei Beweisen. Das wäre sehr nett. Danke.

        
Bezug
Euklidischer Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 24.01.2005
Autor: SEcki

Hallo,

> Könnte mir bitte jemand beim Ansatz helfen, ich habe immer
> Probleme bei Beweisen. Das wäre sehr nett. Danke.

Versuche bitte, den Formeleditior gleichmäßiger zu benutzen - man kann hier fast nur raten, was du meinst ... Zu den 2 Richtungen: Ist es kein Körper, dann ist R[X] kein Hauptidealring - denek mal über [mm](X,r)[/mm] mit einem nicht inv.baren r nach! Zur anderen: hier ist wichtig, dass die Funktion ja gerade die Degree-Funktion ist - und schau jetzt mal, was du aus [mm]1=q*b+r[/mm] mit [mm]b \in R[/mm] folgern kannst - vor allem für r!

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]