| Eulersche Formel < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     | Ich soll mit Hilfe der Eulerschen Formel beweisen, dass gilt:
 
 [mm] sin(3x)=3sin(x)-4sin^3(x)
 [/mm]
 
 und
 
 cos(3x)= [mm] 4cos^3(x)-3cos(3x)
 [/mm]
 
 Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     | Hallo theIngerator,
 
 
 ![[willkommenmr] [willkommenmr]](/images/smileys/willkommenmr.png)  
 > Ich soll mit Hilfe der Eulerschen Formel beweisen, dass
 > gilt:
 >
 > [mm]sin(3x)=3sin(x)-4sin^3(x)[/mm]
 >
 > und
 >
 > cos(3x)= [mm]4cos^3(x)-3cos(3x)[/mm]
 >
 
 
 Es gilt doch [mm]e^{i*3x}=\left( \ e^{i*x} \ \right)^{3}[/mm]
 
 Oder:
 
 [mm]\cos\left(3x\right)+i*\sin\left(3x\right)=\left( \ \cos\left(x\right) + i*\sin\left(x\right) \ \right)^{3} [/mm]
 
 Berechne nun die rechte Seite und trenne sie nach Real- und Imaginärteil.
 
 
 > Ich habe diese Frage in keinem Forum auf anderen
 > Internetseiten gestellt
 
 
 Gruss
 MathePower
 
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     | Vielen Dank,
 
 manchmal sieht man die einfachsten Dinge nicht.
 
 
 |  |  | 
 
 
 |