matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesExponenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Exponenten
Exponenten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponenten: 0^0 ist gleich ?
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 15.07.2006
Autor: DAB268

Hi.

Mich interessiert gerade mal, was [mm] 0^0 [/mm] ist.
Meine Formelsammlung sagt dazu, dass dies ncith definiert sei. Laut Wikipedia ist dies aber =1, was meines erachtens wohl auch richtiger ist.
Was stimmt denn nun?

MfG
DAB268

        
Bezug
Exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Sa 15.07.2006
Autor: M.Rex

Hallo

Das Problem ist, dass

1.) [mm] 0^{n} [/mm] (n [mm] \in \IR) [/mm] = 0 ist.
2.) [mm] a^{0} [/mm] ist aber als 1 definiert.

Um dieses Problem zu umgehen, definiert man [mm] 0^{0} [/mm] üblicherweise als 1, so dass die zweite Gleichung (die häufiger als erwartet auftaucht) ohne Definitionslücke verwendet werden kann.

Marius

Bezug
        
Bezug
Exponenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Sa 15.07.2006
Autor: InterSandman

also es ist eigentlich relativ simple warum hier eine 1 herauskommt.

wir bestimmen zunächst mal den grenzwert

[mm] \limes_{x\rightarrow 0} x^{x} [/mm]

nun wissen wir, dass [mm] x^{x} [/mm] = [mm] e^{x*\ln(x)} [/mm] ist

nun einsetzen -->  [mm] \limes_{x\rightarrow 0}e^{x*\ln(x)} [/mm] = [mm] e^{\limes_{x\rightarrow 0}x*\ln(x)} [/mm]

wenn nun x gegen 0 läuft, wird [mm] x*\lnx=0 [/mm]

nun steht da,   [mm] e^0 [/mm] und [mm] e^0=1 [/mm]

Bezug
                
Bezug
Exponenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 So 16.07.2006
Autor: felixf

Sali!

Mit Grenzwerten das richtige Ergebnis auf falsche Weise auszurechnen scheint ja in letzter Zeit ''in'' zu sein.

> also es ist eigentlich relativ simple warum hier eine 1
> herauskommt.
>  
> wir bestimmen zunächst mal den grenzwert
>  
> [mm]\limes_{x\rightarrow\0} x^{x}[/mm]
>
> nun wissen wir, dass [mm]x^{x}[/mm] = [mm]e^{x*ln(x)}[/mm] ist
>  
> nun einsetzen -->  [mm]\limes_{x\rightarrow\0}e^{x*ln(x)}[/mm] =

> [mm]e^{\limes_{x\rightarrow\0}x*ln(x)}[/mm]
>  
> wenn nun x gegen 0 läuft, wird x*lnx = 0

Die Argumentation ist falsch (bzw. da fehlt eine wichtige Begruendung)! Du kannst auch sagen: $1 = x [mm] \cdot \frac{1}{x}$, [/mm] und fuer $x [mm] \to [/mm] 0$ geht $x$ gegen $0$, also geht das ganze gegen 0 und somit ist $1 = 0$.

Ebenso wie [mm] $\frac{1}{x}$ [/mm] geht [mm] $\ln [/mm] x$ gegen [mm] $-\infty$, [/mm] wenn $x [mm] \to [/mm] 0+$ geht.

Du musst den Grenzwert [mm] $\lim_{x\to0+} [/mm] x [mm] \ln [/mm] x$ also per l'Hospital ausrechnen: [mm] $\lim_{x\to0+} [/mm] x [mm] \ln [/mm] x = [mm] \lim_{x\to0+} \frac{\ln x}{1/x} [/mm] = [mm] \lim_{x\to0+} \frac{1/x}{-1/x^2} [/mm] = [mm] \lim_{x\to0+} [/mm] (-x) = 0$. Und somit gilt [mm] $\lim_{x\to0+} x^x [/mm] = [mm] \exp(\lim_{x\to0+} [/mm] x [mm] \ln [/mm] x) = [mm] \exp(0) [/mm] = 1$.

> nun steht da,   [mm]e^0[/mm] und [mm]e^0=1[/mm]  

Genau.

Allerdings ist das Problem noch nicht ganz erledigt: Wenn man sich die Funktion $(x, y) [mm] \mapsto x^y$ [/mm] anschaut -- in zwei Variablen! -- (Definitionsbereich ist, sagen wir mal, [mm] $(\R_{\ge 0} \times \IR_{\ge 0}) \setminus \{ (0, 0) \}$; [/mm] hier ist die Funktion stetig) dann existiert der Grenzwert $(x, y) [mm] \to [/mm] (0, 0)$ nicht: Er haengt davon ab, auf welcher Kurve man sich dem Nullpunkt naehert.
Insofern: Man kann so nicht wirklich argumentieren, wenn man [mm] $0^0$ [/mm] definieren will.

Es macht aber schon Sinn, [mm] $0^0 [/mm] = 1$ zu definieren, da sich dann sehr viele in der Mathematik vorkommenden Formeln vereinfachen lassen bzw. viele Spezialfaelle so mit bedacht werden. Allein schon die binomische Formel: $(x + [mm] y)^0 [/mm] = [mm] \binom{0}{0} x^0 y^0$ [/mm] mit $x = -y [mm] \neq [/mm] 0$ wuerde nicht stimmen, wenn [mm] $0^0 \neq [/mm] 1$ waere.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]