matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Exponentialfunktion
Exponentialfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Radioaktiver Verfall
Status: (Frage) beantwortet Status 
Datum: 22:11 Mo 09.05.2005
Autor: chris28

Guten Tag
Ich habe gerade ein Problem in der Mathe wo ich stehen geblieben bin.
Ich weiss wie man die Zufallskonstante herausfindet.

Die Aufgabe ist folgend:
Das Radiumsisotop R266 hat eine Halbwertszeit von 1600 Jahren
Die allgemeine Form einer gleichung die den exponetiellen Zerfall angibt, lautet.
M(t) = a * e - [mm] \lambda [/mm] t;  [mm] \lambda [/mm] > 0 //bedeute e hoch [mm] -\lambda [/mm] * t
a)Bestimmen Sie für die Zerfallskonstante y

Mein Ansatz ist:
LN 50 = LN 100 + LN(e - [mm] \lambda [/mm] t) / LN100
LN50 - LN 100 = LN(e - [mm] \lambda [/mm] t)
3,912 - 4,605 = - [mm] \lambda [/mm] t
-0.693 = - [mm] \lambdat [/mm]

Ich danke schon jetzt für jeden Ratschlag

Gruss C.Blättler

        
Bezug
Exponentialfunktion: Halbwertzeit t_H einsetzen
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 09.05.2005
Autor: Loddar

Hallo Chris!


> Das Radiumsisotop R266 hat eine Halbwertszeit von 1600
> Jahren
> Die allgemeine Form einer gleichung die den exponetiellen
> Zerfall angibt, lautet.
> M(t) = a * e - [mm]\lambda[/mm] t;  [mm]\lambda[/mm] > 0 //bedeute e hoch
> [mm]-\lambda[/mm] * t

> a)Bestimmen Sie für die Zerfallskonstante y
>  
> Mein Ansatz ist:
> LN 50 = LN 100 + LN(e - [mm]\lambda[/mm] t) / LN100
> LN50 - LN 100 = LN(e - [mm]\lambda[/mm] t)
> 3,912 - 4,605 = - [mm]\lambda[/mm] t
> -0.693 = - [mm]\lambda*t[/mm]

Das war ja so weit schon ganz gut gerechnet [ok].

Nun musst Du lediglich die Halbwertzeit von [mm] $t_H [/mm] \ = \ 1600 \ a$ einsetzen:

[mm] $\lambda [/mm] \ = \ [mm] \bruch{\ln(2)}{1600} [/mm] \ = \ [mm] \bruch{0,693}{1600} [/mm] \ = \ ...$


Nun klar?

Gruß
Loddar

PS: Bitte benutze doch unseren Formeleditor.

Damit sieht die Zerfallsfunktion doch gleich viel verständlicher aus (wenn Du die Formel mal anklickst, siehst Du die Schreibweise):

$M(t) = a * [mm] e^{-\lambda * t}$ [/mm]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]