matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 08:13 Di 08.04.2008
Autor: buffy333

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=e^x. [/mm]
a) Ermittle die Gleichung der Geraden g durch die Punkte P1 (0;1) und P2 (1;e) des Graphen der Funktion f. Fertige eine Zeichnung an.
b) Für welches X [element von] [0;1] ist die Differenz der Funktionswerte g(x)-f(x) maximal? Berechne das Extremum.


Meine Frage bezieht sich auf die komplette Aufgabe, weil ich diese nicht lösen kann.

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Di 08.04.2008
Autor: angela.h.b.


>  Gegeben ist die Funktion f mit [mm]f(x)=e^x.[/mm]
>  a) Ermittle die Gleichung der Geraden g durch die Punkte
> P1 (0;1) und P2 (1;e) des Graphen der Funktion f. Fertige
> eine Zeichnung an.
>  b) Für welches X Element [0;1] ist die Differenz der
> Funktionswerte g(x)-f(x) maximal? Berechne das Extremum.

>  Meine Frage bezieht sich auf die komplette Aufgabe, weil
> ich diese nicht lösen kann.

Hallo,

[willkommenmr].

Wir helfen hier gerne und gelegentlich sehr ausdauernd, das merkst Du, wenn Du Dich ein bißchen bei uns umschaust. Aber wir brauchen etwas Hilfe beim Helfen: wir müssen wissen, wo es klemmt. Nur so können wir sinnvoll helfen.

Lies hierzu auch die Forenregeln, insbesondere den Absatz über eigene Lösungsansätze und konkrete Fragen.

Nun ein paar Hinweise zur Aufgabe:

Skizziere Dir zunächst die Funktion f.

In a) sind Dir zwei Punkte gegeben, die auf dem Graphen von f  liegen, überzeuge Dich davon und trage sie in der Skizze ein.
Gefragt ist nun die Gleichung der Geraden durch diese Punkte. (Zeichne die Gerade ein.)

Geradengleichungen haben die Form g(x)=mx+b, und Du mußt nun unter Verwendung der beiden Punkte, die Du kennst, das m und b ermitteln, dann steht Deine Geradengleichung.

b) In Deiner Skizze siehst Du die Fläche, die  zwischen den beiden Graphen eingeschlossen wird, diese platte  Linse. Du sollst nun herausfinden, an welcher Stelle der senkrechte Abstand zwischen dem Geradenpunkt und Punkt auf dem Graphen von f am größten ist.

Hierzu betrachte die Funktion h(x)=g(x)-f(x). Sie liefert Dir den Abstand an der Stelle x, mach Dir das in Ruhe klar.

Was jetzt Kommt, ist eine Routinearbeit: nun ist in gewohnter Manier der Extremwert der Funktion h zu berechnen, also 1. Ableitung etc.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]