matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwertberechnung
Extremwertberechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Mi 16.03.2011
Autor: StevieG

Aufgabe
f(x,y) [mm] =2x^{2} [/mm] +xy [mm] +\bruch{5}{4}y^{2}-2x-2y [/mm]

auf dem Einheitsquadrat S=[0,1]X[0,1]


grad f [mm] =\vektor{4x+y-2 \\ x+\bruch{5}{2}y-2} =\vektor{0\\ 0} [/mm]

aus dem GLS folgt : x = [mm] \bruch{1}{3} [/mm]  ,   y= [mm] \bruch{2}{3} [/mm]

Das bedeutet das bei Punkt ( [mm] \bruch{1}{3} [/mm]  ,  [mm] \bruch{2}{3}) [/mm] eine mögliche Extremstelle sein kann.

Um dies zu überprüfen muss man die Hesse-Matrix aufstellen:

H = [mm] \pmat{ 4 & 1 \\ 1 & \bruch{5}{2} } [/mm]

Determinante D = 9 > 0

fxx(x,y)>0 relatives Minimum


1)Da die 2ten Ableitungen in der Hesse Matrix kein x mehr enthalten, ist die Determinante ohne ein x, das heisst ich kann gar nicht die Punkte einsetzen?

[mm] f(\bruch{1}{3},\bruch{2}{3}) [/mm]  = -1  Minimum

Jetzt wird in der Musterlösung noch der Rand von S untersucht.
2)Wieso macht man das eigentlich?
3)Es können doch nur die Punkte extremstellen sein für die der Gradient = 0 ist?

4)was ist ein kritischer Punkt?

        
Bezug
Extremwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mi 16.03.2011
Autor: fred97


> f(x,y) [mm]=2x^{2}[/mm] +xy [mm]+\bruch{5}{4}y^{2}-2x-2y[/mm]
>  
> auf dem Einheitsquadrat S=[0,1]X[0,1]
>  grad f [mm]=\vektor{4x+y-2 \\ x+\bruch{5}{2}y-2} =\vektor{0\\ 0}[/mm]
>  
> aus dem GLS folgt : x = [mm]\bruch{1}{3}[/mm]  ,   y= [mm]\bruch{2}{3}[/mm]
>  
> Das bedeutet das bei Punkt ( [mm]\bruch{1}{3}[/mm]  ,  [mm]\bruch{2}{3})[/mm]
> eine mögliche Extremstelle sein kann.
>  
> Um dies zu überprüfen muss man die Hesse-Matrix
> aufstellen:
>  
> H = [mm]\pmat{ 4 & 1 \\ 1 & \bruch{5}{2} }[/mm]
>  
> Determinante D = 9 > 0
>  
> fxx(x,y)>0 relatives Minimum
>  
>
> 1)Da die 2ten Ableitungen in der Hesse Matrix kein x mehr
> enthalten, ist die Determinante ohne ein x, das heisst ich
> kann gar nicht die Punkte einsetzen?

Doch. Du hast es doch gemacht !??

>  
> [mm]f(\bruch{1}{3},\bruch{2}{3})[/mm]  = -1  Minimum
>  
> Jetzt wird in der Musterlösung noch der Rand von S
> untersucht.
>  2)Wieso macht man das eigentlich?
>  3)Es können doch nur die Punkte extremstellen sein für
> die der Gradient = 0 ist?

Zu 2) und 3): vielleicht hilft Dir ein eindim. Beispiel:

Bestimme Minimum und Maximum von [mm] g(x):=x^2 [/mm] auf dem Intervall [-1,1]

Mach Dir an einem Bild klar, dass g sein Maximum auf dem Rand von [-1,1] annimmt. Diese Punkte kriegst Du aber nicht aus g'(x)=0.

>  
> 4)was ist ein kritischer Punkt?

Ein Punkt [mm] x_0 [/mm] mit  mit [mm] gradf(x_0)=0 [/mm]

FRED


Bezug
                
Bezug
Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Mi 16.03.2011
Autor: StevieG

alles klar sehr gut erklärt.

Eine weitere Frage:


würde ich statt dem Einheitsquadrat ein Einheitskreis haben, könnte ich die Aufgabe nur mit Lagrange lösen oder über die expliozite methode durch einsetzen der NB in die Funktion?



Bezug
                        
Bezug
Extremwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 17.03.2011
Autor: MathePower

Hallo StevieG,

> alles klar sehr gut erklärt.
>  
> Eine weitere Frage:
>  
>
> würde ich statt dem Einheitsquadrat ein Einheitskreis
> haben, könnte ich die Aufgabe nur mit Lagrange lösen oder
> über die expliozite methode durch einsetzen der NB in die
> Funktion?
>  


Für die Extrema auf dem Einheitskreis ist
die Methode nach Lagrange zu verwenden.

Für die Extrema im inneren des Einheitskreises
ist die gewohnte Ermittlung der kritischen Punkte zu verwenden.


Gruss
MathePower

Bezug
                                
Bezug
Extremwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Do 17.03.2011
Autor: Al-Chwarizmi


> > würde ich statt dem Einheitsquadrat ein Einheitskreis
> > haben, könnte ich die Aufgabe nur mit Lagrange lösen oder
> > über die explizite methode durch einsetzen der NB in die
> > Funktion?
>  >  
>
>
> Für die Extrema auf dem Einheitskreis ist
> die Methode nach Lagrange zu verwenden.

"ist zu verwenden" klingt wie "muss verwendet werden",
aber
die "explizite Methode" wäre natürlich auch möglich:

[mm] x:=cos(\varphi) [/mm]  und  [mm] y:=sin(\varphi) [/mm]  setzen und dann die
sich ergebende Funktion des Polarwinkels [mm] \varphi [/mm]  untersuchen.

Auch beim quadratischen Rand geht dies (mit recht-
winkligen Koordinaten). Nur muss man dann die vier
Quadratseiten separat betrachten und dann zwei
Funktionen in x und 2 Funktionen in y mit 1D-Analysis
untersuchen.

LG   Al-Chw.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]