matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenExtremwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Extremwertbestimmung
Extremwertbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbestimmung: Anregung
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 01.02.2011
Autor: Kronos1337

Aufgabe
Bestimme Sie Extremwerte, gegebenfalls Sattel- und Wendepunkte

y = (x² - 5x + 4)²

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
y = (x² - 5x + 4)²

Da wir laut unserem prof. nicht mit dem Binom arbeiten sollen, sondern das ganze über die Kettenregel auflösen sollen ergibt sich für die 1. Ableitung:

y´= x³-7,5²-8,5x-10

Mein Problem ist jetzt eigentlich nur, wie ich von diesem Therm, in der noch eine 3. Potenz steckt den x-Wert rausbekommen soll.

ohne die -10 hätte ich ganz einfach durch x geteilt und dann mit der p,q-Formel gerechnet. Wie gehe ich hierbei vor?

10=x³-7,5x²-8,5x war bis jetzt mein Ansatz.

Ich bitte um eine kleine Anregung, wie ich hier weiterarbeiten soll. Danke

        
Bezug
Extremwertbestimmung: wo ist die Kettenregel?
Status: (Antwort) fertig Status 
Datum: 15:10 Di 01.02.2011
Autor: Roadrunner

Hallo Kronos!


Wenn ich mir Deine Ableitung ansehe, hast Du aber gerade nicht mit der MBKettenregel abgeleitet. Denn dann wäre die Bestimmung der Nullstellen kein Problem, da die Ableitung in faktorisierter Form vorläge.

So bleibt Dir nur probieren und anschließend eine entsprechende MBPolynomdivision.


Gruß vom
Roadrunner



Bezug
                
Bezug
Extremwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 01.02.2011
Autor: Kronos1337

ich habe sehr wohl die kettenregel verwendet:

y=(x²-5x+4)²
y´=(2*(2x-5)) * (x²-5x+4)
(4x-10) *(x²-5x+4)

= 4x³-20x²+16x-10x²+50x-40
=4x³-30x²+66x-40                  <---- habe grade bemerkt, dass sich ein Vorzeichenfehler eingeschlichen hatte und es somit 66x geworden sind.

das ganze kann man nun durch 4 kürzen

=x³-7,5x²+16,5x-10

. Das Ableiten ist nicht mein Problem, sondern wie ich nun weitermachen soll, wenn so etwas herauskommt als 1. Ableitung

Bezug
                        
Bezug
Extremwertbestimmung: zuviel gerechnet
Status: (Antwort) fertig Status 
Datum: 15:40 Di 01.02.2011
Autor: Roadrunner

Hallo Kronos!


> y=(x²-5x+4)²
>  y´=(2*(2x-5)) * (x²-5x+4)
>  (4x-10) *(x²-5x+4)

Und jetzt Stopp! Nicht ausmultiplizieren!
Denn so beraubst Du Dich des Vorteils zur Berechnung der Nullstellen.

Aus dieser Zeile folgt unmittelbar:

$4x-10 \ = \ 0 \ \ \ \ oder \ \ \ \ [mm] x^2-5x+4 [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 01.02.2011
Autor: Blech

Hi,

> =4x³-30x²+66x-40  
> das ganze kann man nun durch 4 kürzen
> =x³-7,5x²+16,5x-10

4=1

Exakt das, hast Du an dieser Stelle geschrieben. =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]