matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFaktorgruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Faktorgruppe
Faktorgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Do 04.10.2012
Autor: unibasel

Aufgabe
Betrachte die Untergruppe H:={ [mm] \pm1,\pmi [/mm] } von [mm] \IC^{*}. [/mm] Beschreibe explizit die Nebenklassen von H in [mm] \IC^{*} [/mm] und zeige, dass die Faktorgruppe [mm] \IC^{*}/H [/mm] zu [mm] \IC^{*} [/mm] isomorph ist.
(komplexe Zahlen ohne Null, man kann es momentan nicht erkennen)

Also ich dachte zuerst einmal, dass die Untergruppe H eine Untergruppe der kleinschen Vierergruppe sei, aber das hilft mir ja nicht weiter....

Laut Definition der Nebenklassen:
G Gruppe, H<G Untergruppe,
Linksnebenklasse ist eine Menge der Gestalt:
aH:={aH| h [mm] \in [/mm] H, a [mm] \in [/mm] G}
a+H:={a+H| h [mm] \in [/mm] H, a [mm] \in [/mm] G}

Rechtsnebenklassen: Menge der Gestalt:
Ha:={Ha| h [mm] \in [/mm] H, a [mm] \in [/mm] G}
H+a:={H+a| h [mm] \in [/mm] H, a [mm] \in [/mm] G}

Wie weiter? Bzw. Wie soll ich jetzt dies auf das Beispiel anwenden?

Und was ist die Faktorgruppe?
Puuh bin total überfordert.
Wäre froh, wenn mir das jemand in einfachen!! Worten erklären könnte...

mfg :)

        
Bezug
Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Do 04.10.2012
Autor: Salamence

Hallo!
Also erstmal sind hier Links- und Rechtsnebenklasse wegen Kommutativität das gleiche.
Sei z eine komplexe Zahl. Dann ist die Nebenklasse von z
[mm] [z]=\{z*h| h \in H\}=\{\pm z\}. [/mm]
Nimmt man also modulo H, so kommt es "aufs Vorzeichen" nicht mehr an, bzw. kommt es auf eine Drehung um [mm] \pi [/mm] (Multiplikation mit -1) nicht mehr an.
Um die Isomorphie zu zeigen, konstruiere dir am besten einen surjektiven Gruppenhomomorphismus [mm] \IC^{\star}\rightarrow \IC^{\star} [/mm] mit Kern H. Dann folgt die Isomorphie aus dem Homomorphiesatz.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]